Skip to main content

Metalloporphyrin in CNS Injuries

  • Chapter
  • First Online:
Redox-Active Therapeutics

Abstract

This chapter discusses the therapeutic potential of cationic Mn(III)-substituted N-pyridyl- and N,N’-imidazolylporphyrins (MnPs) for improving neurological function and histological outcome after central nervous system (CNS) injuries including ischemic and hemorrhagic stroke and traumatic brain and spinal cord injury. Reactive oxygen and nitrogen species are induced during CNS injuries and activate various cellular signals. As such, they are major factors leading to DNA fragmentation, lipid peroxidation, and cell death and significantly impact recovery. MnPs have a biologically compatible metal-centered reduction potential, which allow them to couple with redox-based signaling species acting as both oxidant and antioxidants; in either case they produce therapeutic effects. Such MnPs catalytically remove superoxide, i.e., oxidize it and reduce it, while mimicking superoxide dismutase (SOD) enzymes. They are also able to reduce other species including peroxynitrite, hypochlorite, carbonate anion, and lipid radicals. Yet, they oxidize cellular reductants; in particular oxidation of thiols may be relevant for their impact on signaling pathways in suppressing post-injury activation of cellular transcription factors and subsequent inflammatory responses. MnPs are currently the most effective antioxidants. The therapeutic window for efficacious treatment onset is wide in animal studies of transient cerebral ischemia. MnP efficacy was evident even when treatment began 6 h after reperfusion, which would be particularly important in clinical settings. Moreover, long-term efficacy was detected at 8 weeks in a survival study with continuous treatment for 1 week. The data on MnPs presented in this chapter were generated in multiple preclinical studies. These findings are expected to be pivotal to the development of MnP-based treatment for patients with CNS injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CO3 ∙− :

Carbonate anion radical

CNS:

Central nervous system

ECSOD:

Extracellular superoxide dismutase

EMSA:

Electromobility shift essay

FeP:

Fe(III) porphyrin

FeTE-2-PyP5+ :

Fe(III) meso-tetrakis (N-ethylpyridinium-2-yl) porphyrin

FeTM-4-PyP5+ :

Fe(III) meso-tetrakis(N-methylpyridinium-4-yl)porphyrin

FeTnHex-2-PyP5+ :

Fe(III) meso-tetrakis (N-N-hexylpyridinium-2-yl) porphyrin

FeTSPP3− :

Fe(III) meso-tetrakis(4-sulfonatophenyl)porphyrin

OH:

Hydroxyl radicals

8-OHdG:

8-Hydroxy-2′-deoxyguanosine

H2O2 :

Hydrogen peroxide

HClO:

Hypochlorous acid

ICV:

Intracerebroventricular

IL-6:

Interleukin-6

IP:

Intraperitoneal

IT:

Intrathecal

IV:

Intravenous

LDH:

Lactate dehydrogenase

MAP:

Mean arterial blood pressure

MCAO:

Middle cerebral artery occlusion

MnP:

Mn(III)-substituted N-pyridyl- and N,N′-imidazolylporphyrin

MnTDE-2-ImP5+ :

Mn(III) meso-tetrakis (N,N′-diethylimidazolium-2-yl) porphyrin

MnTE-2-PyP5+ :

Mn(III) meso-tetrakis (N-ethylpyridinium-2-yl) porphyrin

MnTnHex-2-PyP5+ :

Mn(III) meso-tetrakis (N-n-hexylpyridinium-2-yl) porphyrin

MnTnOct-2-PyP5+ :

Mn(III) meso-tetrakis (N-n-octylpyridinium-2-yl) porphyrin

NADPH:

Nicotinamide adenine dinucleotide phosphate

NF-κB:

Nuclear factor -kappa-B

NO:

Nitric oxide radical

NO2 :

Nitrogen dioxide radical

O2 ∙− :

Superoxide anion radical

OGD:

Oxygen glucose deprivation

ONOO :

Peroxynitrite

PBS:

Phosphate-buffered saline

RNS:

Reactive nitrogen species

ROS:

Reactive oxygen species

SAH:

Subarachnoid hemorrhage

SOD:

Superoxide dismutase

Sq:

Subcutaneous

TNF-α:

Tumor necrosis factor α

tPA:

Tissue plasminogen activator

References

  1. Aird KM, Allensworth JL, Batinic-Haberle I, Lyerly HK, Dewhirst MW, Devi GR. ErbB1/2 tyrosine kinase inhibitor mediates oxidative stress-induced apoptosis in inflammatory breast cancer cells. Breast Cancer Res Treat. 2012;132:109–19.

    Article  CAS  PubMed  Google Scholar 

  2. Allensworth JL, Aird KM, Aldrich AJ, Batinic-Haberle I, Devi GR. XIAP inhibition and generation of reactive oxygen species enhances TRAIL sensitivity in inflammatory breast cancer cells. Mol Cancer Ther. 2012;11:1518–27.

    Article  CAS  PubMed  Google Scholar 

  3. Ansari MA, Roberts KN, Scheff SW. A time course of contusion-induced oxidative stress and synaptic proteins in cortex in a rat model of TBI. J Neurotrauma. 2008;25:513–26.

    Article  PubMed  Google Scholar 

  4. Assenza G, Zappasodi F, Squitti R, Altamura C, Ventriglia M, Ercolani M, Quattrocchi CC, Lupoi D, Passarelli F, Vernieri F, Rossini PM, Tecchio F. Neuronal functionality assessed by magnetoencephalography is related to oxidative stress system in acute ischemic stroke. Neuroimage. 2009;44:1267–73.

    Article  Google Scholar 

  5. Awasthi D, Church DF, Torbati D, Carey ME, Pryor WA. Oxidative stress following traumatic brain injury in rats. Surg Neurol. 1997;47:575–81. discussion 581-572.

    Article  CAS  PubMed  Google Scholar 

  6. Ayer RE, Zhang JH. Oxidative stress in subarachnoid haemorrhage: significance in acute brain injury and vasospasm. Acta Neurochir Suppl. 2008;104:33–41.

    Article  CAS  PubMed Central  Google Scholar 

  7. Batinic-Haberle I. Manganese porphyrins and related compounds as mimics of superoxide dismutase. Methods Enzymol. 2002;349:223–33.

    Article  CAS  PubMed  Google Scholar 

  8. Batinic-Haberle I, Liochev SI, Spasojevic I, Fridovich I. A potent superoxide dismutase mimic: manganese beta-octabromo-meso-tetrakis-(N-methylpyridinium-4-yl) porphyrin. Arch Biochem Biophys. 1997;343:225–33.

    Article  CAS  PubMed  Google Scholar 

  9. Batinic-Haberle I, Rajic Z, Benov L. A combination of two antioxidants (an SOD mimic and ascorbate) produces a pro-oxidative effect forcing Escherichia coli to adapt via induction of oxyR regulon. Anticancer Agents Med Chem. 2011;11:329–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Batinic-Haberle I, Reboucas JS, Spasojevic I. Superoxide dismutase mimics: chemistry, pharmacology, and therapeutic potential. Antioxid Redox Signal. 2010;13:877–918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Batinic-Haberle I, Spasojevic I. Complex chemistry and biology of redox-active compounds, commonly known as SOD mimics, affect their therapeutic effects. Antioxid Redox Signal. 2014;20:2323–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Batinic-Haberle I, Tovmasyan A, Roberts ER, Vujaskovic Z, Leong KW, Spasojevic I. SOD therapeutics: latest insights into their structure-activity relationships and impact on the cellular redox-based signaling pathways. Antioxid Redox Signal. 2014;20:2372–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Batinic-Haberle I, Tovmasyan A, Spasojevic I. An educational overview of the chemistry, biochemistry and therapeutic aspects of Mn porphyrins – from superoxide dismutation to H2O2-driven pathways. 2015. doi:10.1016/j.redox.2015.01.017. Redox Biol.

    Google Scholar 

  14. Bayir H, Kagan VE, Tyurina YY, Tyurin V, Ruppel RA, Adelson PD, Graham SH, Janesko K, Clark RS, Kochanek PM. Assessment of antioxidant reserves and oxidative stress in cerebrospinal fluid after severe traumatic brain injury in infants and children. Pediatr Res. 2002;51:571–8.

    Article  PubMed  Google Scholar 

  15. Benov L, Fridovich I. A superoxide dismutase mimic protects sodA sodB Escherichia coli against aerobic heating and stationary-phase death. Arch Biochem Biophys. 1995;322:291–4.

    Article  CAS  PubMed  Google Scholar 

  16. Bowler RP, Sheng H, Enghild JJ, Pearlstein RD, Warner DS, Crapo JD. A catalytic antioxidant (AEOL 10150) attenuates expression of inflammatory genes in stroke. Free Radic Biol Med. 2002;33:1141–52.

    Article  CAS  PubMed  Google Scholar 

  17. Candelario-Jalil E, Alvarez D, Merino N, Leon OS. Delayed treatment with nimesulide reduces measures of oxidative stress following global ischemic brain injury in gerbils. Neurosci Res. 2003;47:245–53.

    Article  CAS  Google Scholar 

  18. Cernak I, Savic VJ, Kotur J, Prokic V, Veljovic M, Grbovic D. Characterization of plasma magnesium concentration and oxidative stress following graded traumatic brain injury in humans. J Neurotrauma. 2000;17:53–68.

    Article  CAS  PubMed  Google Scholar 

  19. Chan PH. Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab. 2001;21:2–14.

    Article  CAS  PubMed  Google Scholar 

  20. Chan PH. Role of oxidants in ischemic brain damage. Stroke. 1996;27:1124–9.

    Article  CAS  Google Scholar 

  21. Chan PH, Epstein CJ, Li Y, Huang TT, Carlson E, Kinouchi H, Yang G, Kamii H, Mikawa S, Kondo T, et al. Transgenic mice and knockout mutants in the study of oxidative stress in brain injury. J Neurotrauma. 1995;12:815–24.

    Article  CAS  PubMed  Google Scholar 

  22. Chan PH, Kamii H, Yang G, Gafni J, Epstein CJ, Carlson E, Reola L. Brain infarction is not reduced in SOD-1 transgenic mice after a permanent focal cerebral ischemia. Neuroreport. 1993;5:293–6.

    Article  CAS  PubMed  Google Scholar 

  23. Chan PH, Kawase M, Murakami K, Chen SF, Li Y, Calagui B, Reola L, Carlson E, Epstein CJ. Overexpression of SOD1 in transgenic rats protects vulnerable neurons against ischemic damage after global cerebral ischemia and reperfusion. J Neurosci. 1998;18:8292–9.

    CAS  PubMed  Google Scholar 

  24. Cornelius C, Crupi R, Calabrese V, Graziano A, Milone P, Pennisi G, Radak Z, Calabrese EJ, Cuzzocrea S. Traumatic brain injury: oxidative stress and neuroprotection. Antioxid Redox Signal. 2013;19:836–53.

    Article  CAS  PubMed  Google Scholar 

  25. Darwish RS, Amiridze N, Aarabi B. Nitrotyrosine as an oxidative stress marker: evidence for involvement in neurologic outcome in human traumatic brain injury. J Trauma. 2007;63:439–42.

    Article  PubMed  Google Scholar 

  26. Dhar A, Kaundal RK, Sharma SS. Neuroprotective effects of FeTMPyP: a peroxynitrite decomposition catalyst in global cerebral ischemia model in gerbils. Pharmacol Res. 2006;54:311–6.

    Article  CAS  PubMed  Google Scholar 

  27. Endo H, Nito C, Kamada H, Yu F, Chan PH. Reduction in oxidative stress by superoxide dismutase overexpression attenuates acute brain injury after subarachnoid hemorrhage via activation of Akt/glycogen synthase kinase-3beta survival signaling. J Cereb Blood Flow Metab. 2007;27:975–82.

    CAS  PubMed  Google Scholar 

  28. Fatima G, Sharma VP, Das SK, Mahdi AA. Oxidative stress and antioxidative parameters in patients with spinal cord injury: implications in the pathogenesis of disease. Spinal Cord. 2014.

    Google Scholar 

  29. Francis JW, Ren J, Warren L, Brown Jr RH, Finklestein SP. Postischemic infusion of Cu/Zn superoxide dismutase or SOD:Tet451 reduces cerebral infarction following focal ischemia/reperfusion in rats. Exp Neurol. 1997;146:435–43.

    Article  CAS  PubMed  Google Scholar 

  30. Fujimura M, Morita-Fujimura Y, Kawase M, Copin JC, Calagui B, Epstein CJ, Chan PH. Manganese superoxide dismutase mediates the early release of mitochondrial cytochrome C and subsequent DNA fragmentation after permanent focal cerebral ischemia in mice. J Neurosci. 1999;19:3414–22.

    CAS  PubMed  Google Scholar 

  31. Gauter-Fleckenstein B, Fleckenstein K, Owzar K, Jiang C, Reboucas JS, Batinic-Haberle I, Vujaskovic Z. Early and late administration of MnTE-2-PyP5+ in mitigation and treatment of radiation-induced lung damage. Free Radic Biol Med. 2010;48:1034–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guo F, Song W, Jiang T, Liu L, Wang F, Zhong H, Yin H, Wang Q, Xiong L. Electroacupuncture pretreatment inhibits NADPH oxidase-mediated oxidative stress in diabetic mice with cerebral ischemia. Brain Res. 2014;1573:84–91.

    Article  CAS  PubMed  Google Scholar 

  33. Hall NC, Packard BA, Hall CL, de Courten-Myers G, Wagner KR. Protein oxidation and enzyme susceptibility in white and gray matter with in vitro oxidative stress: relevance to brain injury from intracerebral hemorrhage. Cell Mol Biol (Noisy-le-Grand). 2000;46:673–83.

    CAS  Google Scholar 

  34. Hayashi T, Hamakawa K, Nagotani S, Jin G, Li F, Deguchi K, Sehara Y, Zhang H, Nagano I, Shoji M, Abe K. HMG CoA reductase inhibitors reduce ischemic brain injury of Wistar rats through decreasing oxidative stress on neurons. Brain Res. 2005;1037:52–8.

    Article  CAS  PubMed  Google Scholar 

  35. Jaramillo MC, Briehl MM Batinic-Haberle I, Tome ME. Inhibition of the electron transport chain via the pro-oxidant activity of the manganese porphyrin, MnTE-2-PyP5+ modulates bioenergetics and enhances the response to chemotherapy in lymphoma cells. Free Radic Biol Med. 2015 (In Press).

    Google Scholar 

  36. Jensen MP, Riley DP. Peroxynitrite decomposition activity of iron porphyrin complexes. Inorg Chem. 2002;41:4788–97.

    Article  CAS  PubMed  Google Scholar 

  37. Jeong HJ, Kim DW, Kim MJ, Woo SJ, Kim HR, Kim SM, Jo HS, Hwang HS, Kim DS, Cho SW, Won MH, Han KH, Park JS, Eum WS, Choi SY. Protective effects of transduced Tat-DJ-1 protein against oxidative stress and ischemic brain injury. Exp Mol Med. 2012;44:586–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jia Z, Zhu H, Li J, Wang X, Misra H, Li Y. Oxidative stress in spinal cord injury and antioxidant-based intervention. Spinal Cord. 2012;50:264–74.

    Article  CAS  PubMed  Google Scholar 

  39. Kawase M, Murakami K, Fujimura M, Morita-Fujimura Y, Gasche Y, Kondo T, Scott RW, Chan PH. Exacerbation of delayed cell injury after transient global ischemia in mutant mice with CuZn superoxide dismutase deficiency. Stroke. 1999;30:1962–8.

    Article  CAS  PubMed  Google Scholar 

  40. Khan I, Batinic-Haberle I, Benov LT. Effect of potent redox-modulating manganese porphyrin, MnTM-2-PyP, on the Na(+)/H(+) exchangers NHE-1 and NHE-3 in the diabetic rat. Redox Rep. 2009;14:236–42.

    Article  CAS  PubMed  Google Scholar 

  41. Kim GW, Kondo T, Noshita N, Chan PH. Manganese superoxide dismutase deficiency exacerbates cerebral infarction after focal cerebral ischemia/reperfusion in mice: implications for the production and role of superoxide radicals. Stroke. 2002;33:809–15.

    Article  CAS  PubMed  Google Scholar 

  42. Leinenweber SB, Sheng H, Lynch JR, Wang H, Batinic-Haberle I, Laskowitz DT, Crapo JD, Pearlstein RD, Warner DS. Effects of a manganese (III) porphyrin catalytic antioxidant in a mouse closed head injury model. Eur J Pharmacol. 2006;531:126–32.

    Article  CAS  PubMed  Google Scholar 

  43. Liu D, Shan Y, Valluru L, Bao F. Mn (III) tetrakis (4-benzoic acid) porphyrin scavenges reactive species, reduces oxidative stress, and improves functional recovery after experimental spinal cord injury in rats: comparison with methylprednisolone. BMC Neurosci. 2013;14:23.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Luo J, Shi R. Diffusive oxidative stress following acute spinal cord injury in guinea pigs and its inhibition by polyethylene glycol. Neurosci Lett. 2004;359:167–70.

    Article  CAS  PubMed  Google Scholar 

  45. Mackensen GB, Patel M, Sheng H, Calvi CL, Batinic-Haberle I, Day BJ, Liang LP, Fridovich I, Crapo JD, Pearlstein RD, Warner DS. Neuroprotection from delayed postischemic administration of a metalloporphyrin catalytic antioxidant. J Neurosci. 2001;21:4582–92.

    CAS  Google Scholar 

  46. Matz PG, Fujimura M, Lewen A, Morita-Fujimura Y, Chan PH. Increased cytochrome c-mediated DNA fragmentation and cell death in manganese-superoxide dismutase-deficient mice after exposure to subarachnoid hemolysate. Stroke. 2001;32:506–15.

    Article  CAS  PubMed  Google Scholar 

  47. Mehta SL, Lin Y, Chen W, Yu F, Cao L, He Q, Chan PH, Li PA. Manganese superoxide dismutase deficiency exacerbates ischemic brain damage under hyperglycemic conditions by altering autophagy. Transl Stroke Res. 2011;2:42–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Meng X, Wang M, Wang X, Sun G, Ye J, Xu H, Sun X. Suppression of NADPH oxidase- and mitochondrion-derived superoxide by Notoginsenoside R1 protects against cerebral ischemia-reperfusion injury through estrogen receptor-dependent activation of Akt/Nrf2 pathways. Free Radic Res. 2014;48:823–38.

    Article  CAS  PubMed  Google Scholar 

  49. Mu X, Azbill RD, Springer JE. Riluzole improves measures of oxidative stress following traumatic spinal cord injury. Brain Res. 2000;870:66–72.

    Article  CAS  PubMed  Google Scholar 

  50. Murakami K, Kondo T, Kawase M, Li Y, Sato S, Chen SF, Chan PH. Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency. J Neurosci. 1998;18:205–13.

    CAS  Google Scholar 

  51. Murotomi K, Takagi N, Takeo S, Tanonaka K. NADPH oxidase-mediated oxidative damage to proteins in the postsynaptic density after transient cerebral ischemia and reperfusion. Mol Cell Neurosci. 2011;46:681–8.

    Article  CAS  PubMed  Google Scholar 

  52. Noshita N, Sugawara T, Fujimura M, Morita-Fujimura Y, Chan PH. Manganese superoxide dismutase affects Cytochrome c release and Caspase-9 activation after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab. 2001;21:557–67.

    Article  CAS  PubMed  Google Scholar 

  53. Odeh AM, Craik JD, Ezzeddine R, Tovmasyan A, Batinic-Haberle I, Benov LT. Targeting mitochondria by Zn(II)N-alkylpyridylporphyrins: the impact of compound sub-mitochondrial partition on cell respiration and overall photodynamic efficacy. PLoS One. 2014;9, e108238.

    Article  PubMed Central  Google Scholar 

  54. Petronilho F, Feier G, de Souza B, Guglielmi C, Constantino LS, Walz R, Quevedo J, Dal-Pizzol F. Oxidative stress in brain according to traumatic brain injury intensity. J Surg Res. 2010;164:316–20.

    Article  CAS  PubMed  Google Scholar 

  55. Piganelli JD, Flores SC, Cruz C, Koepp J, Batinic-Haberle I, Crapo J, Day B, Kachadourian R, Young R, Bradley B, Haskins K. A metalloporphyrin-based superoxide dismutase mimic inhibits adoptive transfer of autoimmune diabetes by a diabetogenic T-cell clone. Diabetes. 2002;51:347–55.

    Article  CAS  PubMed  Google Scholar 

  56. Pineda JA, Aono M, Sheng H, Lynch J, Wellons JC, Laskowitz DT, Pearlstein RD, Bowler R, Crapo J, Warner DS. Extracellular superoxide dismutase overexpression improves behavioral outcome from closed head injury in the mouse. J Neurotrauma. 2001;18:625–34.

    Article  CAS  PubMed  Google Scholar 

  57. Rabbani ZN, Batinic-Haberle I, Anscher MS, Huang J, Day BJ, Alexander E, Dewhirst MW, Vujaskovic Z. Long-term administration of a small molecular weight catalytic metalloporphyrin antioxidant, AEOL 10150, protects lungs from radiation-induced injury. Int J Radiat Oncol Biol Phys. 2007;67:573–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rabbani ZN, Salahuddin FK, Yarmolenko P, Batinic-Haberle I, Thrasher BA, Gauter-Fleckenstein B, Dewhirst MW, Anscher MS, Vujaskovic Z. Low molecular weight catalytic metalloporphyrin antioxidant AEOL 10150 protects lungs from fractionated radiation. Free Radic Res. 2007;41:1273–82.

    Article  CAS  PubMed  Google Scholar 

  59. Rabbani ZN, Spasojevic I, Zhang X, Moeller BJ, Haberle S, Vasquez-Vivar J, Dewhirst MW, Vujaskovic Z, Batinic-Haberle I. Antiangiogenic action of redox-modulating Mn(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin, MnTE-2-PyP(5+), via suppression of oxidative stress in a mouse model of breast tumor. Free Radic Biol Med. 2009;47:992–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Reboucas JS, Spasojevic I, Tjahjono DH, Richaud A, Mendez F, Benov L, Batinic-Haberle I. Redox modulation of oxidative stress by Mn porphyrin-based therapeutics: the effect of charge distribution. Dalton Trans. 2008;7(9):1233–42.

    Article  Google Scholar 

  61. Rodriguez-Rodriguez A, Egea-Guerrero JJ, Murillo-Cabezas F, Carrillo-Vico A. Oxidative stress in traumatic brain injury. Curr Med Chem. 2014;21:1201–11.

    Article  CAS  PubMed  Google Scholar 

  62. Ross AD, Sheng H, Warner DS, Piantadosi CA, Batinic-Haberle I, Day BJ, Crapo JD. Hemodynamic effects of metalloporphyrin catalytic antioxidants: structure-activity relationships and species specificity. Free Radic Biol Med. 2002;33:1657–69.

    Article  CAS  PubMed  Google Scholar 

  63. Saito A, Hayashi T, Okuno S, Nishi T, Chan PH. Modulation of proline-rich akt substrate survival signaling pathways by oxidative stress in mouse brains after transient focal cerebral ischemia. Stroke. 2006;37:513–7.

    Article  CAS  Google Scholar 

  64. Saito A, Hayashi T, Okuno S, Nishi T, Chan PH. Oxidative stress is associated with XIAP and Smac/DIABLO signaling pathways in mouse brains after transient focal cerebral ischemia. Stroke. 2004;35:1443–8.

    Article  CAS  PubMed  Google Scholar 

  65. Sheng H, Bart RD, Oury TD, Pearlstein RD, Crapo JD, Warner DS. Mice overexpressing extracellular superoxide dismutase have increased resistance to focal cerebral ischemia. Neuroscience. 1999;88:185–91.

    Article  CAS  PubMed  Google Scholar 

  66. Sheng H, Brady TC, Pearlstein RD, Crapo JD, Warner DS. Extracellular superoxide dismutase deficiency worsens outcome from focal cerebral ischemia in the mouse. Neurosci Lett. 1999;267:13–6.

    Article  CAS  PubMed  Google Scholar 

  67. Sheng H, Chaparro RE, Sasaki T, Izutsu M, Pearlstein RD, Tovmasyan A, Warner DS. Metalloporphyrins as therapeutic catalytic oxidoreductants in central nervous system disorders. Antioxid Redox Signal. 2014;20:2437–64.

    Article  CAS  PubMed  Google Scholar 

  68. Sheng H, Enghild JJ, Bowler R, Patel M, Batinic-Haberle I, Calvi CL, Day BJ, Pearlstein RD, Crapo JD, Warner DS. Effects of metalloporphyrin catalytic antioxidants in experimental brain ischemia. Free Radic Biol Med. 2002;33:947–61.

    Article  CAS  PubMed  Google Scholar 

  69. Sheng H, Kudo M, Mackensen GB, Pearlstein RD, Crapo JD, Warner DS. Mice overexpressing extracellular superoxide dismutase have increased resistance to global cerebral ischemia. Exp Neurol. 2000;163:392–8.

    Article  CAS  PubMed  Google Scholar 

  70. Sheng H, Spasojevic I, Tse HM, Jung JY, Hong J, Zhang Z, Piganelli JD, Batinic-Haberle I, Warner DS. Neuroprotective efficacy from a lipophilic redox-modulating Mn(III) N-Hexylpyridylporphyrin, MnTnHex-2-PyP: rodent models of ischemic stroke and subarachnoid hemorrhage. J Pharmacol Exp Ther. 2011;338:906–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sheng H, Spasojevic I, Warner DS, Batinic-Haberle I. Mouse spinal cord compression injury is ameliorated by intrathecal cationic manganese(III) porphyrin catalytic antioxidant therapy. Neurosci Lett. 2004;366:220–5.

    Article  CAS  PubMed  Google Scholar 

  72. Sheng H, Yang W, Fukuda S, Tse HM, Paschen W, Johnson K, Batinic-Haberle I, Crapo JD, Pearlstein RD, Piganelli J, Warner DS. Long-term neuroprotection from a potent redox-modulating metalloporphyrin in the rat. Free Radic Biol Med. 2009;47:917–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shimanovich R, Groves JT. Mechanisms of peroxynitrite decomposition catalyzed by FeTMPS, a bioactive sulfonated iron porphyrin. Arch Biochem Biophys. 2001;387:307–17.

    Article  CAS  PubMed  Google Scholar 

  74. Shohami E, Beit-Yannai E, Horowitz M, Kohen R. Oxidative stress in closed-head injury: brain antioxidant capacity as an indicator of functional outcome. J Cereb Blood Flow Metab. 1997;17:1007–19.

    Article  CAS  PubMed  Google Scholar 

  75. Siesjo BK, Agardh CD, Bengtsson F. Free radicals and brain damage. Cerebrovasc Brain Metab Rev. 1989;1:165–211.

    CAS  PubMed  Google Scholar 

  76. Sivonova M, Kaplan P, Durackova Z, Dobrota D, Drgova A, Tatarkova Z, Pavlikova M, Halasova E, Lehotsky J. Time course of peripheral oxidative stress as consequence of global ischaemic brain injury in rats. Cell Mol Neurobiol. 2008;28:431–41.

    Article  CAS  Google Scholar 

  77. Spasojevic I, Chen Y, Noel TJ, Fan P, Zhang L, Reboucas JS, Clair DKS, Batinic-Haberle I. Pharmacokinetics of the potent redox-modulating manganese porphyrin, MnTE-2-PyP(5+), in plasma and major organs of B6C3F1 mice. Free Radic Biol Med. 2008;45:943–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Spasojevic I, Chen Y, Noel TJ, Yu Y, Cole MP, Zhang L, Zhao Y, Clair DKS, Batinic-Haberle I. Mn porphyrin-based superoxide dismutase (SOD) mimic, MnIIITE-2-PyP5+, targets mouse heart mitochondria. Free Radic Biol Med. 2007;42:1193–200.

    Article  CAS  PubMed Central  Google Scholar 

  79. Spasojevic I, Kos I, Benov LT, Rajic Z, Fels D, Dedeugd C, Ye X, Vujaskovic Z, Reboucas JS, Leong KW, Dewhirst MW, Batinic-Haberle I. Bioavailability of metalloporphyrin-based SOD mimics is greatly influenced by a single charge residing on a Mn site. Free Radic Res. 2011;45:188–200.

    Article  CAS  PubMed  Google Scholar 

  80. Sugawara T, Lewen A, Gasche Y, Yu F, Chan PH. Overexpression of SOD1 protects vulnerable motor neurons after spinal cord injury by attenuating mitochondrial cytochrome c release. FASEB J. 2002;16:1997–9.

    CAS  PubMed  Google Scholar 

  81. Takenaga M, Ohta Y, Tokura Y, Hamaguchi A, Nakamura M, Okano H, Igarashi R. Lecithinized superoxide dismutase (PC-SOD) improved spinal cord injury-induced motor dysfunction through suppression of oxidative stress and enhancement of neurotrophic factor production. J Control Release. 2006;110:283–9.

    Article  CAS  PubMed  Google Scholar 

  82. Thiyagarajan M, Kaul CL, Sharma SS. Neuroprotective efficacy and therapeutic time window of peroxynitrite decomposition catalysts in focal cerebral ischemia in rats. Br J Pharmacol. 2004;142:899–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tovmasyan A, Maia CG, Weitner T, Sampaio RS, Lieb D, Ghazaryan R, Ivanovic-Burmazovic I, Reboucas JS, Benov L, Batinic-Haberle I. A comprehensive evaluation of the catalase-like activity of different classes of redox-active therapeutic. Free Radic Biol Med. 2015;86.

    Google Scholar 

  84. Tovmasyan A, Reboucas JS, Benov L. Simple biological systems for assessing the activity of superoxide dismutase mimics. Antioxid Redox Signal. 2014;20:2416–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tovmasyan A, Sheng H, Weitner T, Arulpragasam A, Lu M, Warner DS, Vujaskovic Z, Spasojevic I, Batinic-Haberle I. Design, mechanism of action, bioavailability and therapeutic effects of mn porphyrin-based redox modulators. Med Princ Pract. 2013;22:103–30.

    Article  PubMed  Google Scholar 

  86. Tovmasyan A, Weitner T, Sheng H, Lu M, Rajic Z, Warner DS, Spasojevic I, Reboucas JS, Benov L, Batinic-Haberle I. Differential coordination demands in Fe versus Mn water-soluble cationic metalloporphyrins translate into remarkably different aqueous redox chemistry and biology. Inorg Chem. 2013;52:5677–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Vujaskovic Z, Batinic-Haberle I, Rabbani ZN, Feng QF, Kang SK, Spasojevic I, Samulski TV, Fridovich I, Dewhirst MW, Anscher MS. A small molecular weight catalytic metalloporphyrin antioxidant with superoxide dismutase (SOD) mimetic properties protects lungs from radiation-induced injury. Free Radic Biol Med. 2002;33:857–63.

    Article  CAS  PubMed  Google Scholar 

  88. Wakai T, Sakata H, Narasimhan P, Yoshioka H, Kinouchi H, Chan PH. Transplantation of neural stem cells that overexpress SOD1 enhances amelioration of intracerebral hemorrhage in mice. J Cereb Blood Flow Metab. 2014;34:441–9.

    Article  CAS  PubMed  Google Scholar 

  89. Warner DS, Sheng H, Batinic-Haberle I. Oxidants, antioxidants and the ischemic brain. J Exp Biol. 2004;207:3221–31.

    Article  CAS  PubMed  Google Scholar 

  90. Weitner T, Kos I, Sheng H, Tovmasyan A, Reboucas JS, Fan P, Warner DS, Vujaskovic Z, Batinic-Haberle I, Spasojevic I. Comprehensive pharmacokinetic studies and oral bioavailability of two Mn porphyrin-based SOD mimics, MnTE-2-PyP5+ and MnTnHex-2-PyP5+. Free Radic Biol Med. 2013;58:73–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wellons 3rd JC, Sheng H, Laskowitz DT, Mackensen GB, Pearlstein RD, Warner DS. A comparison of strain-related susceptibility in two murine recovery models of global cerebral ischemia. Brain Res. 2000;868:14–21.

    Article  CAS  PubMed  Google Scholar 

  92. Wise-Faberowski L, Warner DS, Spasojevic I, Batinic-Haberle I. Effect of lipophilicity of Mn (III) ortho N-alkylpyridyl- and diortho N,N′-diethylimidazolylporphyrins in two in-vitro models of oxygen and glucose deprivation-induced neuronal death. Free Radic Res. 2009;43:329–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Xu Y, Liachenko SM, Tang P, Chan PH. Faster recovery of cerebral perfusion in SOD1-overexpressed rats after cardiac arrest and resuscitation. Stroke. 2009;40:2512–8.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Yu F, Sugawara T, Nishi T, Liu J, Chan PH. Overexpression of SOD1 in transgenic rats attenuates nuclear translocation of endonuclease G and apoptosis after spinal cord injury. J Neurotrauma. 2006;23:595–603.

    Article  PubMed  Google Scholar 

  95. Zhan Y, Chen C, Suzuki H, Hu Q, Zhi X, Zhang JH. Hydrogen gas ameliorates oxidative stress in early brain injury after subarachnoid hemorrhage in rats. Crit Care Med. 2012;40:1291–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaxin Sheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sheng, H., Warner, D.S. (2016). Metalloporphyrin in CNS Injuries. In: Batinić-Haberle, I., Rebouças, J., Spasojević, I. (eds) Redox-Active Therapeutics. Oxidative Stress in Applied Basic Research and Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-30705-3_24

Download citation

Publish with us

Policies and ethics