Skip to main content

HNO/Thiol Biology as a Therapeutic Target

  • Chapter
  • First Online:
Book cover Redox-Active Therapeutics

Abstract

Nitroxyl (HNO) is a protonated, one-electron reduction product of nitric oxide (NO) with distinct biological effects. Like NO, HNO exerts vasodilatory effects and inhibits platelet aggregation but unlike NO, it stimulates the release of the strongest known vasodilator, calcitonin gene-related peptide and, more importantly, it reacts with thiols to eventually lead to their oxidation to disulfides. It became clearer in recent years that it is this particular chemical property that holds the key to the great pharmacological potential of the HNO donors; the treatment of the heart failure being the best example. The emergence of hydrogen sulfide (H2S), a new gaseous signaling molecule with physiological and pharmacological effects overlapping with those of NO (and HNO), led to some interesting discoveries suggesting the important role of the NO/H2S crosstalk in the endogenous generation of HNO, but also opening up some new perspective for the use of this chemistry as pharmacological substitute for the HNO donors. This book chapter summarizes all recent advancements in the field of HNO (bio)chemistry and pharmacology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

Adenylate cyclase

AS:

Angeli’s salt

ALDH:

Aldehyde dehydrogenase

cAMP:

Cyclic adenosine monophosphate

CBS:

Cystathionine beta synthase

cGMP:

Cyclic guanosine monophosphate

CGRP:

Calcitonin gene-related peptide

CHF:

Congestive heart failure

CLR:

Calcitonin receptor-like receptor

CSE:

Cystathionine gamma lyase

CuZnSOD:

Cooper zinc superoxide dismutase

DTT:

Dithiothreitol

EDHF:

Endothelium derived hyperpolarizing factor

EDRF:

Endothelium-derived relaxing factor

FeSOD:

Iron superoxide dismutase

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

GSH:

Glutathione

IPA/NO:

Isopropylamine diazeniumdiolate

IR:

Ischemia/reperfusion

MHC:

Myosin heavy chain

MLC1:

Myosin light chain

MnSOD:

Manganese superoxide dismutase

NMDA:

N-methyl-d-aspartate receptor

NOS:

Nitric oxide synthase

PKA:

Protein kinase A

PLN:

Phospholamban

RAMP:

Receptor activity modifying protein

RyR:

Ryanodine receptor

SERCA2a:

Sarcoplasmic reticulum Ca2+ ATPase

sGC:

Soluble guanylate cyclase

SNP:

Sodium nitroprusside

TRPA1:

Transient receptor potential ankyrin 1

VSMC:

Vascular smooth muscle cells

References

  1. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987;327(6122):524–6.

    Article  CAS  PubMed  Google Scholar 

  2. Palmer RMJ, Ashton DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988;333:664–6.

    Article  CAS  PubMed  Google Scholar 

  3. Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991;43(2):109–42.

    CAS  PubMed  Google Scholar 

  4. Friebe A, Koesling D. Regulation of nitric oxide-sensitive guanylyl cyclase. Circ Res. 2003;93:96–105.

    Article  CAS  PubMed  Google Scholar 

  5. Angeli A, Angelico F. Reactions of nitroxyl [NOH]. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti. 1901;10(v):164–8.

    CAS  Google Scholar 

  6. Angeli A, Angelico F. Nitrohydroxylaminic acid. Gazz Chim Ital. 1903;33:245.

    Google Scholar 

  7. Ulich BL, Hollis JM, Snyder LE. Radio detection of nitroxyl (HNO): the first interstellar NO bond. Astrophys J Lett. 1977;217:L105–8.

    Article  CAS  Google Scholar 

  8. Turner BE. A molecular line survey of sagittarius B2 and orion-KL from 70 to 115 GHz. II—analysis of the data. Astrophys J Suppl Ser. 1991;76:617–86.

    Article  CAS  Google Scholar 

  9. Harteck P. Die Darstellung von HNO bzw. [HNO]n (The preparation of HNO or [HNO]n). Berichte der Deutschen Chemischen Gesellschaft. 1933;66B:423–6.

    Article  CAS  Google Scholar 

  10. Switzer CH, Miller TW, Farmer PJ, Fukuto JM. Synthesis and characterization of lithium oxonitrate (LiNO). J Inorg Biochem. 2013;118:128–33.

    Article  CAS  PubMed  Google Scholar 

  11. Doctorovich F, Bikiel D, Pellegrino J, Suárez SA, Larsen A, Martí MA. Nitroxyl (azanone) trapping by metalloporphyrins. Coordin Chem Rev. 2011;255(23–24):2764–84.

    Article  CAS  Google Scholar 

  12. DuMond JF, King BS. The chemistry of nitroxyl-releasing compounds. Antioxid Redox Signal. 2011;9:1637–48.

    Article  CAS  Google Scholar 

  13. Miranda KM, Nagasawa HT, Toscano JP. Donors of HNO. Curr Top Med Chem. 2005;5:647–64.

    Article  Google Scholar 

  14. Bonner FT, Ravid B. Thermal-decomposition of oxyhyponitrite (sodium trioxodinitrate(II)) in aqueous-solution. Inorg Chem. 1975;14:558–63.

    Article  CAS  Google Scholar 

  15. Dutton AS, Fukuto JM, Houk KN. Mechanisms of HNO and NO production from Angeli’s salt: density functional and CBS-QB3 theory predictions. J Am Chem Soc. 2004;126:3795–800.

    Article  CAS  PubMed  Google Scholar 

  16. Hughes MN, Wimbledon PE. Chemistry of trioxodinitrates. 1. Decomposition of sodium trioxodinitrate (Angelis Salt) in aqueous-solution. J Chem Soc Dalton Trans. 1976;8:703–7.

    Article  Google Scholar 

  17. Miranda KM, Dutton AS, Ridnour LA, Foreman CA, Ford E, Paolocci N, et al. Mechanism of aerobic decomposition of Angeli’s salt (sodium trioxodinitrate) at physiological pH. J Am Chem Soc. 2005;127:722–31.

    Article  CAS  PubMed  Google Scholar 

  18. Amatore C, Arbault S, Ducrocq C, Hu S, Tapsoba I. Angeli’s salt (Na2N2O3) is a precursor of HNO and NO: a voltammetric study of the reactive intermediates released by Angeli’s salt decomposition. ChemMedChem. 2007;2(6):898–903.

    Article  CAS  PubMed  Google Scholar 

  19. Gladwin MT, Schechter AN, Kim-Shapiro DB, Patel RP, Hogg N, Shiva S, et al. The emerging biology of the nitrite anion. Nat Chem Biol. 2005;1(6):308–14.

    Article  CAS  PubMed  Google Scholar 

  20. Piloty O. Ueber eine Oxydation des Hydroxylamins durch Benzolsulfochlorid. Ber Dtch Ges. 1896;29:1559–67.

    Article  CAS  Google Scholar 

  21. Angeli A, Angelico F. New reactions of nitroxyl (dihydroxyammonia). Gazzetta Chimica Italiana. 1905;35(i):152–9.

    CAS  Google Scholar 

  22. Bonner FT, Ko YH. Kinetic, isotopic, and N15 NMR-study of N-hydroxybenzenesulfonamide decomposition—an HNO source reaction. Inorg Chem. 1992;31:2514–9.

    Article  CAS  Google Scholar 

  23. Seel FBC. Mechanism of the decomposition of sodium benzenesulfohydroxamate in aqueous solution. Z Anorg Allg Chem. 1972;394:187–96.

    Article  CAS  Google Scholar 

  24. Toscano JP, Brookfield FA, Cohen AD, Courtney SM, Frost LM, Kalish VJ. Preparation of N-hydroxylsulfonamide derivatives as nitroxyl (HNO) donors. Baltimore: Johns Hopkins University; 2007. p. 83.

    Google Scholar 

  25. Toscano JP, Brookfield FA, Cohen AD, Courtney SM, Frost LM, Kalish VJ. Preparation of aryl N-hydroxysulfonamides as physiologically useful nitroxyl donors. Baltimore: Johns Hopkins University; 2009. p. 24.

    Google Scholar 

  26. DeMaster EG, Kaplan E, Shirota FN, Nagasawa HT. Metabolic activation of cyanamide by liver mitochondria, a requirement for the inhibition of aldehyde dehydrogenase enzymes. Biochem Biophys Res Commun. 1982;107:1333–9.

    Article  CAS  PubMed  Google Scholar 

  27. Demaster EG, Nagasawa HT, Shirota FN. Metabolic activation of cyanamide to an inhibitor of aldehyde dehydrogenase in vitro. Pharmacol Biochem Be. 1983;18 Suppl 1:273–7.

    Article  CAS  Google Scholar 

  28. DeMaster EG, Redfern B, Nagasawa HT. Mechanisms of inhibition of aldehyde dehydrogenase by nitroxyl, the active metabolite of the alcohol deterrent agent cyanamide. Biochem Pharmacol. 1998;55:2007–15.

    Article  CAS  PubMed  Google Scholar 

  29. DeMaster EG, Shirota FN, Nagasawa HT. Catalase mediated conversion of cyanamide to an inhibitor of aldehyde dehydrogenase. Alcohol. 1985;2:117–21.

    Article  CAS  PubMed  Google Scholar 

  30. DeMaster EG, Shirota FN, Nagasawa HT. The metabolic activation of cyanamide to an inhibitor of aldehyde dehydrogenase is catalyzed by catalase. Biochem Biophys Res Commun. 1984;122:358–65.

    Article  CAS  PubMed  Google Scholar 

  31. Nagasawa HT, Demaster EG, Redfern B, Shirota FN, Goon JW. Evidence for nitroxyl in the catalase-mediated bioactivation of the alcohol deterrent agent cyanamide. J Med Chem. 1990;33:3120–2.

    Article  CAS  PubMed  Google Scholar 

  32. Schep L, Temple W, Beasley M. The adverse effects of hydrogen cyanamide on human health: an evaluation of inquiries to the New Zealand National Poisons Centre. Clin Toxicol. 2009;472(1):58–60.

    Article  CAS  Google Scholar 

  33. Keefer LK. Fifty years of diazeniumdiolate research. From laboratory curiosity to broad-spectrum biomedical advances. ACS Chem Biol. 2011;6(11):1147–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Keefer LK. Nitric oxide (NO)- and nitroxyl (HNO)-generating diazeniumdiolates (NONOates): emerging commercial opportunities. Curr Top Med Chem. 2005;5(7):625–36.

    Article  CAS  PubMed  Google Scholar 

  35. Keefer LK. Progress toward clinical application of the nitric oxide-releasing diazeniumdiolates. Annu Rev Pharmacol Toxicol. 2003;43:585–607.

    Article  CAS  PubMed  Google Scholar 

  36. Miranda KM, Katori T, Torres de Holding CL, Thomas L, Ridnour LA, McLendon WJ, et al. Comparison of the NO and HNO donating properties of diazeniumdiolates: primary amine adducts release HNO in Vivo. J Med Chem. 2005;48(26):8220–8.

    Article  CAS  PubMed  Google Scholar 

  37. Andrei D, Salmon DJ, Donzelli S, Wahab A, Klose JR, Citro ML, et al. Dual mechanisms of HNO generation by a nitroxyl prodrug of the diazeniumdiolate (NONOate) class. J Am Chem Soc. 2010;132(46):16526–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Holland RJ, Paulisch R, Cao Z, Keefer LK, Saavedra JE, Donzelli S. Enzymatic generation of the NO/HNO-releasing IPA/NO anion at controlled rates in physiological media using β-galactosidase. Nitric Oxide. 2013;35:131–6.

    Article  CAS  PubMed  Google Scholar 

  39. Salmon DJ, TorresdeHolding CL, Thomas L, Peterson KV, Goodman GP, Saavedra JE, et al. HNO and NO release from a primary amine-based diazeniumdiolate as a function of pH. Inorg Chem. 2011;50(8):3262–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Adachi Y, Nakagawa H, Matsuo K, Suzuki T, Miyata N. Photoactivatable HNO-releasing compounds using the retro-Diels-Alder reaction. Chem Commun (Camb). 2008;41:5149–51.

    Article  CAS  Google Scholar 

  41. Sha X, Isbell TS, Patel RP, Day CS, King SB. Hydrolysis of acyloxy nitroso compounds yields nitroxyl (HNO). J Am Chem Soc. 2006;128:9687–92.

    Article  CAS  PubMed  Google Scholar 

  42. Graetzel M, Taniguchi S, Henglein A. Pulse radiolytic study of short-lived by-products of nitric oxide-reduction in aqueous solution. Berich Bunsen Ge. 1970;74:1003–10.

    CAS  Google Scholar 

  43. Bartberger MD, Fukuto JM, Houk KN. On the acidity and reactivity of HNO in aqueous solution and biological systems. Proc Natl Acad Sci USA. 2001;98:2194–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bartberger MD, Liu W, Ford E, Miranda KM, Switzer C, Fukuto JM, et al. The reduction potential of nitric oxide (NO) and its importance to NO biochemistry. Proc Natl Acad Sci USA. 2002;99:10958–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shafirovich V, Lymar SV. Nitroxyl and its anion in aqueous solutions: spin states, protic equilibria, and reactivities toward oxygen and nitric oxide. Proc Natl Acad Sci USA. 2002;99:7340–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Flores-Santana W, Salmon DJ, Donzelli S, Switzer CH, Basudhar D, Ridnour L, et al. The specificity of nitroxyl chemistry is unique among nitrogen oxides in biological systems. Antioxid Redox Signal. 2011;14(9):1659–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fukuto JM, Carrington SJ. HNO signalling mechanisms. Antioxid Redox Signal. 2011;14:1649–57.

    Article  CAS  PubMed  Google Scholar 

  48. Miranda KM. The chemistry of nitroxyl (HNO) and implications in biology. Coord Chem Rev. 2005;249:433–55.

    Article  CAS  Google Scholar 

  49. Jackson MI, Han TH, Dutton A, Ford E, Miranda KM, Houk KN, et al. Kinetic feasibility of nitroxyl (HNO) reduction by physiological reductants and biological implications. Free Radic Biol Med. 2009;47:1130–9.

    Article  CAS  PubMed  Google Scholar 

  50. Liochev SI, Fridovich I. The mode of decomposition of Angeli’s salt (Na2N2O3) and the effects thereon of oxygen, nitrite, superoxide dismutase, and glutathione. Free Radical Biol Med. 2003;34:1399–404.

    Article  CAS  Google Scholar 

  51. Donald CE, Hughes MN, Thompson JM, Bonner FT. Photolysis of the nitrogen-nitrogen double bond in trioxodinitrate: reaction between triplet oxonitrate(1-) and molecular oxygen to form peroxonitrite. Inorg Chem. 1986;25:2676–7.

    Article  CAS  Google Scholar 

  52. Jorolan JH, Buttitta LA, Cheah C, Miranda KM. Comparison of the chemical reactivity of synthetic peroxynitrite with that of the autoxidation products of nitroxyl or its anion. Nitric Oxide. 2015;44:39–46.

    Article  CAS  PubMed  Google Scholar 

  53. Espey MG, Miranda KM, Thomas DD, Wink DA. Ingress and reactive chemistry of nitroxyl-derived species within human cells. Free Radical Biol Med. 2002;33:827–34.

    Article  CAS  Google Scholar 

  54. Miranda KM, Espey MG, Yamada K, Krishna M, Ludwick N, Kim S, et al. Unique oxidative mechanisms for the reactive nitrogen oxide species, nitroxyl anion. J Biol Chem. 2001;276:1720–7.

    Article  CAS  PubMed  Google Scholar 

  55. Miranda KM, Yamada K, Espey MG, Thomas DD, DeGraff W, Mitchell JB, et al. Further evidence for distinct reactive intermediates from nitroxyl and peroxynitrite: effects of buffer composition on the chemistry of Angeli’s salt and synthetic peroxynitrite. Arch Biochem Biophys. 2002;401(2):134–44.

    Article  CAS  PubMed  Google Scholar 

  56. Seddon WA, Young MJ. Pulse radiolysis of nitric oxide in aqueous solution. Can J Chem. 1970;48:393–4.

    Article  CAS  Google Scholar 

  57. Seddon WA, Fletcher JW, Sopchyshyn FC. Pulse radiolysis of nitric oxide in aqueous solution. Can J Chem. 1973;51:1123–30.

    Article  CAS  Google Scholar 

  58. Miranda KM, Nims RW, Thomas DD, Espey MG, Citrin D, Bartberger MD, et al. Comparison of the reactivity of nitric oxide and nitroxyl with heme proteins. A chemical discussion of the differential biological effects of these redox related products of NOS. J Inorg Biochem. 2003;93:52–60.

    Article  CAS  PubMed  Google Scholar 

  59. Bazylinski DA, Hollocher TC. Metmyoglobin and methemoglobin as efficient traps for nitrosyl hydride (nitroxyl) in neutral aqueous solution. J Am Chem Soc. 1985;107:7982–6.

    Article  CAS  Google Scholar 

  60. Doyle MP, Mahapatro SN, Broene RD, Guy JK. Oxidation and reduction of hemoproteins by trioxodinitrate(II): the role of nitrosyl hydride and nitrite. J Am Chem Soc. 1988;110:593–9.

    Article  CAS  Google Scholar 

  61. Wink DA, Feelisch M. Formation and detection of nitroxyl and nitrous oxide. In: Feelisch M, Stamler JS, editors. Methods in nitric oxide research. London: Wiley; 1996.

    Google Scholar 

  62. Lin R, Farmer PJ. The HNO adduct of myoglobin: synthesis and characterization. J Am Chem Soc. 2000;122:2393–4.

    Article  CAS  Google Scholar 

  63. Sulc F, Fleischer E, Farmer P, Ma D, La Mar G. 1H NMR structure of the heme pocket of HNO-myoglobin. J Biol Inorg Chem. 2003;8:348–52.

    CAS  PubMed  Google Scholar 

  64. Ellis A, Li CG, Rand MJ. Differential actions of L-cysteine on responses to nitric oxide, nitroxyl anions and EDRF in the rat aorta. Br J Pharmacol. 2000;129:315–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Favaloro JL, Kemp-Harper BK. The nitroxyl anion (HNO) is a potent dilator of rat coronary vasculature. Cardiovasc Res. 2007;73:587–96.

    Article  CAS  PubMed  Google Scholar 

  66. Fukuto JM, Chiang K, Hszieh R, Wong P, Chaudhuri G. The pharmacological activity of nitroxyl: a potent vasodilator with activity similar to nitric oxide and/or endothelium-derived relaxing factor. J Pharmacol Exp Ther. 1992;263:546–51.

    CAS  PubMed  Google Scholar 

  67. Irvine JC, Favaloro JL, Kemp-Harper BK. NO- activates soluble guanylate cyclase and Kv channels to vasodilate resistance arteries. Hypertension. 2003;41:1301–7.

    Article  CAS  PubMed  Google Scholar 

  68. Li CG, Karagiannis J, Rand MJ. Comparison of the redox forms of nitrogen monoxide with the nitrergic transmitter in the rat anococcygeus muscle. Br J Pharmacol. 1999;127:826–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dierks EA, Burstyn JN. Nitric oxide (NO), the only nitrogen monoxide redox form capable of activating soluble guanylyl cyclase. Biochem Pharmacol. 1996;51:1593–600.

    Article  CAS  PubMed  Google Scholar 

  70. Zamora R, Grzesiok A, Weber H, Feelisch M. Oxidative release of nitric oxide accounts for guanylyl cyclase stimulating, vasodilator and antiplatelet activity of Piloty’s acid: a comparison with Angeli’s salt. Biochem J. 1995;312:333–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zeller A, Wenzl MV, Beretta M, Stessel H, Russwurm M, Koesling D, et al. Mechanisms underlying activation of soluble guanylate cyclase by the HNO donor Angeli’s Salt. Mol Pharmacol. 2009;76:1115–22.

    Article  CAS  PubMed  Google Scholar 

  72. Miller TW, Cherney MM, Lee AJ, Francoleon NE, Farmer PJ, King SB, et al. The effects of nitroxyl (HNO) on soluble guanylate cyclase activity interactions at ferrous heme and cysteine thiols. J Biol Chem. 2009;284:21788–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Miranda KM, Paolocci N, Katori T, Thomas DD, Ford E, Bartberger MD, et al. A biochemical rationale for the discrete behavior of nitroxyl and nitric oxide in the cardiovascular system. Proc Natl Acad Sci USA. 2003;100:9196–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Väänänen AJ, Salmenperä P, Hukkanen M, Miranda KM, Harjula A, Rauhala P, Kankuri E. Persistent susceptibility of cathepsin B to irreversible inhibition by nitroxyl (HNO) in the presence of endogenous nitric oxide. Free Radic Biol Med. 2008;45:749–55.

    Article  PubMed  CAS  Google Scholar 

  75. Sherman MP, Grither WR, McCulla RD. Computational investigation of the reaction mechanisms of nitroxyl and thiols. J Org Chem. 2010;75:4014–24.

    Article  CAS  PubMed  Google Scholar 

  76. Shen B, English AM. Mass spectrometric analysis of nitroxyl-mediated protein modification: comparison of products formed with free and protein-based cysteines. Biochemistry. 2005;44:14030–44.

    Article  CAS  PubMed  Google Scholar 

  77. Lu J, Holmgren A. The thioredoxin antioxidant system. Free Radic Biol Med. 2014;66:75–87.

    Article  CAS  PubMed  Google Scholar 

  78. Hoffman MD, Walsh GM, Rogalski JC, Kast J. Identification of nitroxyl-induced modifications in human platelet proteins using a novel mass spectrometric detection method. Mol Cell Proteom. 2009;8:887–903.

    Article  CAS  Google Scholar 

  79. Hammond AH, Fry JR. Effect of cyanamide on toxicity and glutathione depletion in rat hepatocyte cultures: differences between two dichloropropanol isomers. Chem Biol Interact. 1999;122:107–15.

    Article  CAS  PubMed  Google Scholar 

  80. Lopez BE, Rodriguez CE, Pribadi M, Cook NM, Shinyashiki M, Fukuto JM. Inhibition of yeast glycolysis by nitroxyl (HNO): mechanism of HNO toxicity and implications to HNO biology. Arch Biochem Biophys. 2005;442:140–8.

    Article  CAS  PubMed  Google Scholar 

  81. Lopez BE, Wink DA, Fukuto JM. The inhibition of glyceraldehyde-3-phosphate dehydrogenase by nitroxyl (HNO). Arch Biochem Biophys. 2007;465:430–6.

    Article  CAS  PubMed  Google Scholar 

  82. Eberhardt M, Dux M, Namer B, Miljkovic J, Cordasic N, Will C, et al. H2S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway. Nat Commun. 2014;5:4381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Roos G, Foloppe N, Messens J. Understanding the pKa of redox cysteines: the key role of hydrogen bonding. Antioxid Redox Signal. 2013;18:94–127.

    Article  CAS  PubMed  Google Scholar 

  84. Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288:373–6.

    Article  CAS  PubMed  Google Scholar 

  85. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA. 1987;84:9265–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Moncada S, Palmer RMJ, Higgs EA. Biosynthesis of nitric oxide from l-arginine: a pathway for the regulation of cell function and communication. Biochem Pharmacol. 1989;38:1709–15.

    Article  CAS  PubMed  Google Scholar 

  87. Andrews KL, Irvine JC, Tare M, Apostolopoulos J, Favaloro JL, Triggle CR, et al. A role for nitroxyl (HNO) as an endothelium- derived relaxing and hyperpolarizing factor in resistance arteries. Br J Pharmacol. 2009;157:540–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. De Witt BJ, Marrone JR, Kaye AD, Keefer LK, Kadowitz PJ. Comparison of responses to novel nitric oxide donors in the feline pulmonary vascular bed. Eur J Pharmacol. 2001;430(2–3):311–5.

    Article  PubMed  Google Scholar 

  89. Favaloro JL, Kemp-Harper B. Redox variants of NO (NO. and HNO) elict vasorelaxation of resistance arteries via distinct mechanisms. Am J Physiol Heart Circ Physiol. 2009;296:H1274–80.

    Article  CAS  PubMed  Google Scholar 

  90. Irvine JC, Favaloro JL, Widdop RE, Kemp-Harper BK. Nitroxyl anion donor, Angeli’s salt, does not develop tolerance in rat isolated aortae. Hypertension. 2007;49:885–92.

    Article  CAS  PubMed  Google Scholar 

  91. Wanstall JC, Jeffery TK, Gambino A, Lovren F. Triggle CR Vascular smooth muscle relaxation mediated by nitric oxide donors: a comparison with acetylcholine, nitric oxide and nitroxyl ion. Br J Pharmacol. 2001;134:463–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Paolocci N, Katori T, Champion HC, St John ME, Miranda KM, Fukuto JM, et al. Positive inotropic and lusitropic effects of HNO/NO- in failing hearts: independence from beta-adrenergic signaling. Proc Natl Acad Sci USA. 2003;100:5537–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Paolocci N, Saavedra WF, Miranda KM, Martignani C, Isoda T, Hare JM, et al. Nitroxyl anion exerts redox-sensitive positive cardiac inotropy in vivo by calcitonin gene-related peptide signaling. Proc Natl Acad Sci USA. 2001;98:10463–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zygmunt PM, Edwards G, Weston AH, Larsson B, Högestätt ED. Involvement of voltage-dependent potassium channels in the EDHF-mediated relaxation of rat hepatic artery. Br J Pharmacol. 1997;121(1):141–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bullen ML, Miller AA, Andrews KL, Irvine JC, Ritchie RH, Sobey CG, et al. Nitroxyl (HNO) as a vasoprotective signaling molecule. Antioxid Redox Signal. 2011;14(9):1675–86.

    Article  CAS  PubMed  Google Scholar 

  96. Irvine JC, Kemp-Harper BK, Widdop RE. Chronic administration of the HNO donor Angeli’s salt does not lead to tolerance, cross-tolerance, or endothelial dysfunction: comparison with GTN and DEANO. Antioxid Redox Signal. 2011;14:1615–24.

    Article  CAS  PubMed  Google Scholar 

  97. Münzel T, Daiber A, Gori T. More answers to the still unresolved question of nitrate tolerance. Eur Heart J. 2013;34(34):2666–73.

    Article  PubMed  CAS  Google Scholar 

  98. Brain SD, Cambridge H. Calcitonin gene-related peptide: vasoactive effects and potential therapeutic role. Gen Pharmacol-Vasc S. 1996;27:607–11.

    Article  CAS  Google Scholar 

  99. Brain SD, Williams TJ, Tippins JR, Morris HR, MacIntyre I. Calcitonin gene-related peptide is a potent vasodilator. Nature. 1985;313:54–6.

    Article  CAS  PubMed  Google Scholar 

  100. Morris HR, Panico M, Etienne T, Tippins J, Girgis SI, MacIntyre I. Isolation and characterization of human calcitonin gene-related peptide. Nature. 1984;308:746–8.

    Article  CAS  PubMed  Google Scholar 

  101. Brain SD, Grant AD. Vascular actions of calcitonin gene-related peptide and adrenomedullin. Physiol Rev. 2004;84:903–34.

    Article  CAS  PubMed  Google Scholar 

  102. Mulderry PK, Ghatei MA, Bishop AE, Allen YS, Polak JM, Bloom SR. Distribution and chromatographic characterisation of CGRP-like immunoreactivity in the brain and gut of the rat. Regul Peptides. 1985;12:133–43.

    Article  CAS  Google Scholar 

  103. Russell FA, King R, Smillie SJ, Kodji X, Brain SD. Calcitonin gene-related peptide: physiology and pathophysiology. Physiol Rev. 2014;94(4):1099–142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sexton PM. Central nervous system binding sites for calcitonin and calcitonin gene-related peptide. Mol Neurobiol. 1991;5:251–73.

    Article  CAS  PubMed  Google Scholar 

  105. Wimalawansa SJ. Amylin, calcitonin gene-related peptide, calcitonin, and adrenomedullin. A peptide superfamily. Crit Rev Neurobiol. 1997;11:167–239.

    Article  CAS  PubMed  Google Scholar 

  106. Matteoli M, Haimann C, Torri-Tarelli F, Polak JM, Ceccarelli B, De Camilli P. Differential effect of alphalatrotoxin on exocytosis from small synaptic vesicles and from large dense-core vesicles containing calcitonin gene-related peptide at the frog neuromuscular junction. Proc Natl Acad Sci U S A. 1989;85:7366–70.

    Article  Google Scholar 

  107. Chang CP, Pearse Ii RV, O’Connell S, Rosenfeld MG. Identification of a seven transmembrane helix receptor for corticotropin-releasing factor and sauvagine in mammalian brain. Neuron. 1993;11:1187–95.

    Article  CAS  PubMed  Google Scholar 

  108. Evans BN, Rosenblatt MI, Mnayer LO, Oliver KR, Dickerson IM. CGRP-RCP, a novel protein required for signal transduction at calcitonin gene-related peptide and adrenomedullin receptors. J Biol Chem. 2000;275:31438–43.

    Article  CAS  PubMed  Google Scholar 

  109. Luebke AE, Dahl GP, Roos BA, Dickerson IM. Identification of a protein that confers calcitonin gene-related peptide responsiveness to oocytes by using a cystic fibrosis transmembrane conductance regulator assay. Proc Natl Acad Sci USA. 1996;93:3455–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. McLatchie LM, Fraser NJ, Main MJ, Wise A, Brown J, Thompson N, et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature. 1998;393:333–9.

    Article  CAS  PubMed  Google Scholar 

  111. Brain SD, Tippins JR, Morris HR, MacIntyre I, Williams TJ. Potent vasodilator activity of calcitonin gene-related peptide in human skin. J Invest Dermatol. 1986;87:533–6.

    Article  CAS  PubMed  Google Scholar 

  112. Gray DW, Marshall I. Human alpha-calcitonin gene-related peptide stimulates adenylate cyclase and guanylate cyclase and relaxes rat thoracic aorta by releasing nitric oxide. Br J Pharmacol. 1992;107:691–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. de Hoon JN, Pickkers P, Smits P, Struijker-Boudier HA, Van Bortel LM. Calcitonin gene-related peptide: exploring its vasodilating mechanism of action in humans. Clin Pharmacol Ther. 2003;73:312–21.

    Article  PubMed  CAS  Google Scholar 

  114. Zygmunt PM, Högestätt ED. TRPA1. Handb Exp Pharmacol. 2014;222:583–630.

    Article  CAS  PubMed  Google Scholar 

  115. Story GM, Peier AM, Reeve AJ, Eid SR, Mosbacher J, Hricik TR, et al. ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell. 2003;112:819–29.

    Article  CAS  PubMed  Google Scholar 

  116. Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J, et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell. 2006;124:1269–82.

    Article  CAS  PubMed  Google Scholar 

  117. Bautista DM, Movahed P, Hinman A, Axelsson HE, Sterner O, Högestätt ED, et al. Pungent products from garlic activate the sensory ion channel TRPA1. Proc Natl Acad Sci USA. 2005;102:12248–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Takahashi N, Kuwaki T, Kiyonaka S, Numata T, Kozai D, Mizuno Y, et al. TRPA1 underlies a sensing mechanism for O2. Nat Chem Biol. 2011;7:701–11.

    Article  CAS  PubMed  Google Scholar 

  119. Andersson DA, Gentry C, Moss S, Bevan S. Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J Neurosci. 2008;28:2485–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Takahashi N, Mizuno Y, Kozai D, Yamamoto S, Kiyonaka S, Shibata T, et al. (2008) Molecular characterization of TRPA1 channel activation by cysteine-reactive inflammatory mediators. Channels. 2008;2:287–98.

    Article  PubMed  Google Scholar 

  121. Hinman A, Chuang HH, Bautista DM, Julius D. TRP channel activation by reversible covalent modification. Proc Natl Acad Sci USA. 2006;103:19564–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Macpherson LJ, Dubin AE, Evans MJ, Marr F, Schultz PG, Cravatt BF, et al. Noxious compounds activate TRPA1 ion channels through covalent modification of cysteines. Nature. 2007;445:541–5.

    Article  CAS  PubMed  Google Scholar 

  123. Cvetkov TL, Huynh KW, Cohen MR, Moiseenkova-Bell VY. Molecular architecture and subunit organization of TRPA1 channel revealed by electron microscopy. J Biol Chem. 2011;286:38168–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Wang L, Cvetkov TL, Chance MR, Moiseenkova-Bell VY. Identification of in vivo disulfide conformation of the TRPA1 ion channel. J Biol Chem. 2012;287:6169–76.

    Article  CAS  PubMed  Google Scholar 

  125. Sabbah HN, Tocchetti CG, Wang M, Daya S, Gupta RC, Tunin RS, et al. Nitroxyl (HNO): a novel approach for the acute treatment of heart failure. Circ Heart Fail. 2013;6(6):1250–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Katori T, Hoover DB, Ardell JL, Helm RH, Belardi DF, Tocchetti CG, Forfia PR, Kass DA, Paolocci N. Calcitonin gene-related peptide in vivo positive inotropy is attributable to regional sympatho-stimulation and is blunted in congestive heart failure. Circ Res. 2005;96:234–43.

    Article  CAS  PubMed  Google Scholar 

  127. Al-Rubaiee M, Gangula PR, Millis RM, Walker RK, Umoh NA, Cousins VM, et al. Inotropic and lusitropic effects of calcitonin gene-related peptide in the heart. Am J Physiol Heart Circ Physiol. 2013;304(11):H1525–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Saetrum Opgaard O, de Vries R, Tom B, Edvinsson L, Saxena PR. Positive inotropy of calcitonin gene-related peptide and amylin on porcine isolated myocardium. Eur J Pharmacol. 1999;385(2–3):147–54.

    Article  CAS  PubMed  Google Scholar 

  129. Saetrum Opgaard O, Hasbak P, de Vries R, Saxena PR, Edvinsson L. Positive inotropy mediated via CGRP receptors in isolated human myocardial trabeculae. Eur J Pharmacol. 2000;397(2–3):373–82.

    Article  CAS  PubMed  Google Scholar 

  130. Cueille C, Pidoux E, de Vernejoul MC, Ventura-Clapier R, Garel JM. Increased myocardial expression of RAMP1 and RAMP3 in rats with chronic heart failure. Biochem Biophys Res Commun. 2002;294(2):340–6.

    Article  CAS  PubMed  Google Scholar 

  131. Øie E, Vinge LE, Yndestad A, Sandberg C, Grøgaard HK, Attramadal H. Induction of a myocardial adrenomedullin signaling system during ischemic heart failure in rats. Circulation. 2000;101:415–22.

    Article  PubMed  Google Scholar 

  132. Cheong E, Tumbev V, Abramson J, Salama G, Stoyanovsky DA. Nitroxyl triggers Ca2+ release from skeletal and cardiac sarcoplasmic reticulum by oxidizing ryanodine receptors. Cell Calcium. 2005;37:87–96.

    Article  CAS  PubMed  Google Scholar 

  133. Tocchetti CG, Wang W, Froehlich JP, Huke S, Aon MA, Wilson GM, et al. Nitroxyl improves cellular heart function by directly enhancing cardiac sarcoplasmic reticulum Ca2+ cycling. Circ Res. 2007;100:96–104.

    Article  CAS  PubMed  Google Scholar 

  134. Donoso P, Sanchez G, Bull R, Hidalgo C. Modulation of cardiac ryanodine receptor activity by ROS and RNS. Front Biosci (Landmark Ed). 2011;16:553–67.

    Article  CAS  Google Scholar 

  135. Kohr MJ, Kaluderic N, Tocchetti CG, Gao WD, Kass DA, Janssen PML, et al. Nitroxyl enhances myocyte Ca2+ transients by exclusively targeting SR Ca2+-cycling. Front Biosci. 2010;E2:614–26.

    Article  CAS  Google Scholar 

  136. Froehlich JP, Mahaney JE, Keceli G, Pavlos CM, Goldstein R, Redwood AJ, et al. Phospholamban thiols play a central role in activation of the cardiac muscle sarcoplasmic reticulum calcium pump by nitroxyl. Biochemistry. 2008;47:13150–2.

    Article  CAS  PubMed  Google Scholar 

  137. Sivakumaran V, Stanley BA, Tocchetti CG, Ballin JD, Caceres V, Zhou L, et al. HNO enhances SERCA2a activity and cardiomyocyte function by promoting redox-dependent phospholamban oligomerization. Antioxid Redox Signal. 2013;19(11):1185–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Tocchetti CG, Stanley BA, Murray CI, Sivakumaran V, Donzelli S, Mancardi D, et al. Playing with cardiac “redox switches”: the “HNO way” to modulate cardiac function. Antioxid Redox Signal. 2011;14(9):1687–98.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  139. Lancel S, Zhang J, Evangelista A, Trucillo MP, Tong X, Siwik DA, et al. Nitroxyl activates SERCA in cardiac myocytes via glutathiolation of cysteine 674. Circ Res. 2009;104(6):720–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Gao WD, Murray CI, Tian Y, Zhong X, DuMond JF, Shen X, et al. Nitroxyl-mediated disulfide bond formation between cardiac myofilament cysteines enhances contractile function. Circ Res. 2012;111(8):1002–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Pagliaro P, Mancardi D, Rastaldo R, Penna C, Gattullo D, Miranda KM, et al. Nitroxyl affords thiol-sensitive myocardial protective effects akin to early preconditioning. Free Radic Biol Med. 2003;34:33–43.

    Article  CAS  PubMed  Google Scholar 

  142. Ma XL, Gao F, Liu GL, Lopez BL, Christopher TA, Fukuto JM, et al. Opposite effects of nitric oxide and nitroxyl on postischemic myocardial injury. Proc Natl Acad Sci U S A. 1999;96(25):14617–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Naughton P, Foresti R, Bains SK, Hoque M, Green CJ, Motterlini R. Induction of heme oxygenase 1 by nitrosative stress. A role for nitroxyl anion. J Biol Chem. 2002;277(43):40666–74.

    Article  CAS  PubMed  Google Scholar 

  144. Naughton P, Hoque M, Green CJ, Foresti R, Motterlini R. Interaction of heme with nitroxyl or nitric oxide amplifies heme oxygenase-1 induction: involvement of the transcription factor Nrf2. Cell Mol Biol. 2002;48(8):885–94.

    CAS  PubMed  Google Scholar 

  145. Tsihlis ND, Murar J, Kapadia MR, Ahanchi SS, Oustwani CS, Saavedra JE, et al. Isopropylamine NONOate (IPA/NO) moderates neointimal hyperplasia following vascular injury. J Vasc Surg. 2010;51:1248–59.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Shiva S, Crawford JH, Ramachandran A, Ceaser EK, Hillson T, Brookes PS, et al. Mechanisms of the interaction of nitroxyl with mitochondria. Biochem J. 2004;379(Pt 2):359–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Queliconi BB, Wojtovich AP, Nadtochiy SM, Kowaltowski AJ, Brookes PS. Redox regulation of the mitochondrial K(ATP) channel in cardioprotection. Biochim Biophys Acta. 2011;1813(7):1309–15.

    Article  CAS  PubMed  Google Scholar 

  148. Chazotte-Aubert L, Oikawa S, Gilibert I, Bianchini F, Kawanishi S, Ohshima H. Cytotoxicity and site-specific DNA damage induced by nitroxyl anion (NO-) in the presence of hydrogen peroxide—implications for various pathophysiological conditions. J Biol Chem. 1999;274:20909–15.

    Article  CAS  PubMed  Google Scholar 

  149. Ohshima H, Gilibert I, Bianchini F. Induction of DNA strand breakage and base oxidation by nitroxyl anion through hydroxyl radical production. Free Radic Biol Med. 1999;26:1305–13.

    Article  CAS  PubMed  Google Scholar 

  150. Norris AJ, Sartippour MR, Lu M, Park T, Rao JY, Jackson MI, et al. Nitroxyl inhibits breast tumor growth and angiogenesis. Int J Cancer. 2008;122:1905–10.

    Article  CAS  PubMed  Google Scholar 

  151. Kim WK, Choi YB, Rayudu PV, Das P, Asaad W, Arnelle DR, et al. Attenuation of NMDA receptor activity and neurotoxicity by nitroxyl anion, NO. Neuron. 1999;24(2):461–9.

    Article  CAS  PubMed  Google Scholar 

  152. Väänänen AJ, Moed M, Tuominen RK, Helkamaa TH, Wiksten M, Liesi P, Chiueh CC, Rauhala P. Angeli’s salt induces neurotoxicity in dopaminergic neurons in vivo and in vitro. Free Radic Res. 2003;37(4):381–9.

    Article  CAS  PubMed  Google Scholar 

  153. Choe CU, Lewerenz J, Fischer G, Uliasz TF, Espey MG, Hummel FC, et al. Nitroxyl exacerbates ischemic cerebral injury and oxidative neurotoxicity. J Neurochem. 2009;110:1766–73.

    Article  CAS  PubMed  Google Scholar 

  154. Edvinsson L. Calcitonin gene-related peptide (CGRP) and the pathophysiology of headache: therapeutic implications. CNS Drugs. 2001;15:745–53.

    Article  CAS  PubMed  Google Scholar 

  155. Elvidge S. Anti-CGRP antibodies for migraine turn industry heads. Nat Biotechnol. 2014;32(8):707.

    Article  CAS  PubMed  Google Scholar 

  156. Dux M, Will C, Vogler B, Filipovic MR, Messlinger K. Meningeal blood flow is controlled by H2S-NO crosstalk activating a HNO-TRPA1-CGRP signalling pathway. Br J Pharmacol. 2016;173(3):431–45. doi:10.1111/bph.13164

    Google Scholar 

  157. Wong PSY, Hyun J, Fukuto JM, Shirota FN, DeMaster EG, Shoeman DW, Nagasawa HT. Reaction between S-nitrosothiols and thiols: generation of nitroxyl (HNO) and subsequent chemistry. Biochemistry. 1998;37:5362–71.

    Article  CAS  PubMed  Google Scholar 

  158. Schmidt HHHW, Hofmann H, Schindler U, Shutenko ZS, Cunningham DD, Feelisch M. No NO from NO synthase. Proc Natl Acad Sci USA. 1996;93:14492–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Donzelli S, Espey MG, Flores-Santana W, Switzer CH, Yeh GC, Huang J, et al. Generation of nitroxyl by heme protein-mediated peroxidation of hydroxylamine but not N-hydroxy-L-arginine. Free Radical Biol Med. 2008;45:578–84.

    Article  CAS  Google Scholar 

  160. Filipovic MR, Stanic D, Raicevic S, Spasic M, Niketic V. Consequences of MnSOD interactions with •NO: •NO dismutation, peroxynitrite and H2O2 generation. Free Rad Res. 2007;41:62–72.

    Article  CAS  Google Scholar 

  161. Sharpe MA, Cooper CE. Reactions of nitric oxide with mitochondrial cytochrome c: a novel mechanism for the formation of nitroxyl anion and peroxynitrite. Biochem J. 1998;332(Pt 1):9–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Foster MW, Hess DT, Stamler JS. Protein S-nitrosylation in health and disease: a current perspective. Trends Mol Med. 2009;15:391–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Hess DT, Stamler JS. Regulation by S-nitrosylation of protein post-translational modification. J Biol Chem. 2012;287:4411–8.

    Article  CAS  PubMed  Google Scholar 

  164. Seth D, Stamler JS. The SNO-proteome: causation and classifications. Curr Opin Chem Biol. 2011;15:129–36.

    Article  CAS  PubMed  Google Scholar 

  165. Lima B, Forrester MT, Hess DT, Stamler JS. S-nitrosylation in cardiovascular signa. Circ Res. 2010;106:633–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Arnelle DR, Stamler JS. NO+, NO, and NO donation by S-Nitrosothiols: implications for regulation of physiological functions by S-Nitrosylation and acceleration of disulfide formation. Arch Biochem Biophys. 1995;318:279–85.

    Article  CAS  PubMed  Google Scholar 

  167. Talipov MR, Timerghazin QK. Protein control of S-nitrosothiol reactivity: interplay of antagonistic resonance structures. J Phys Chem B. 2013;117:1827–37.

    Article  CAS  PubMed  Google Scholar 

  168. Broniowska KA, Hogg N. The chemical biology of S-nitrosothiols. Antioxid Redox Signal. 2012;17:969–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hogg N. Biological chemistry and clinical potential of S-nitrosothiols. Free Radic Biol Med. 2000;28:1478–86.

    Article  CAS  PubMed  Google Scholar 

  170. Hobbs AJ, Fukuto JM, Ignarro LJ. Formation of free nitric oxide from l-arginine by nitric oxide synthase: direct enhancement of generation by superoxide dismutase. Proc Natl Acad Sci USA. 1994;91:10992–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Adak S, Wang Q, Stuehr DJ. Arginine conversion to nitroxide by tetrahydrobiopterin-free neuronal nitric-oxide synthase: implications for mechanism. J Biol Chem. 2000;275:33554–61.

    Article  CAS  PubMed  Google Scholar 

  172. Rusche KM, Spiering MM, Marletta MA. Reactions catalyzed by tetrahydrobiopterin-free nitric oxide synthase. Biochemistry. 1998;37:15503–12.

    Article  CAS  PubMed  Google Scholar 

  173. Niketic V, Stojanovic S, Nikolic A, Spasic M, Michelson AM. Exposure of Mn and FeSODs, but not Cu/ZnSOD, to NO leads to nitrosonium and nitroxyl ions generation which cause enzyme modification and inactivation: an in vitro study. Free Radic Biol Med. 1999;27:992–6.

    Article  CAS  PubMed  Google Scholar 

  174. Liochev SI, Fridovich I. Nitroxyl (NO-): a substrate for superoxide dismutase. Arch Biochem Biophys. 2002;402(2):166–71.

    Article  CAS  PubMed  Google Scholar 

  175. Filipovic MR, Duerr K, Mojovic M, Simovic V, Zimmerman R, Niketic V, et al. NO dismutase activity of seven-coordinate manganese(II) pentaazamacrocyclic complexes. Angew Chem Int Edit. 2008;47:8735–9.

    Article  CAS  Google Scholar 

  176. Filipovic MR, Koh ACW, Arbautlt S, Niketic V, Debus A, Schleicher U, et al. Striking inflammation from both sides: manganese(II) pentaazamacrocyclic SOD mimics act also as nitric oxide dismutases: a single-cell study. Angew Chem Int Edit. 2010;49:4228–32.

    Article  CAS  Google Scholar 

  177. Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci. 1996;16:1066–71.

    CAS  PubMed  Google Scholar 

  178. Li L, Hsu A, Moore PK. Actions and interactions of nitric oxide, carbon monoxide and hydrogen sulphide in the cardiovascular system and in inflammation-a tale of three gases! Pharmacol Ther. 2009;123:386–400.

    Article  CAS  PubMed  Google Scholar 

  179. Mustafa AK, Gadalla MM, Sen N, et al. H2S signals through protein S-sulfhydration. Sci Signal. 2009;2:ra72.

    Google Scholar 

  180. Wang R. Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J. 2002;16:1792–808.

    Article  CAS  PubMed  Google Scholar 

  181. Kabil O, Banerjee R. Enzymology of H2S biogenesis, decay and signaling. Antioxid Redox Signal. 2014;20:770–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Kabil O, Motl N, Banerjee R. H2S and its role in redox signaling. Biochim Biophys Acta. 2014;1844(8):1355–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Kimura H, Nagai Y, Umemura K, Kimura Y. Physiological roles of hydrogen sulfide: synaptic modulation, neuroprotection, and smooth muscle relaxation. Antioxid Redox Signal. 2005;7:795–803.

    Article  CAS  PubMed  Google Scholar 

  184. Li L, Bhatia M, Zhu YZ, et al. Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB J. 2005;19:1196–8.

    CAS  PubMed  Google Scholar 

  185. Yang G, Wu L, Jiang B, et al. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science. 2008;322:587–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Calvert JW, Elston M, Nicholson CK, et al. Genetic and pharmacologic hydrogen sulfide therapy attenuates ischemia-induced heart failure in mice. Circulation. 2010;122:11–9.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Calvert JW, Jha S, Gundewar S, et al. Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ Res. 2009;105:365–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  188. Blackstone E, Morrison M, Roth MB. H2S induces a suspended animation-like state in mice. Science. 2005;308:518.

    Article  CAS  PubMed  Google Scholar 

  189. Filipovic MR, Miljkovic JL, Nauser T, Royzen M, Klos K, Shubina T, et al. Chemical characterization of the smallest S-nitrosothiol, HSNO; cellular cross-talk of H2S and S-nitrosothiols. J Am Chem Soc. 2012;134:12016–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Rosenthal J, Lippard S. Direct detection of nitroxyl in aqueous solution using a TripodalCopper(II) BODIPY complex. J Am Chem Soc. 2010;132:5536–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Filipovic MR, Eberhardt M, Prokopovic V, Mijuskovic A, Orescanin Dusic O, et al. Beyond H2S and NO interplay: hydrogen sulfide and nitroprusside react directly to give nitroxyl (HNO). A new pharmacological source of HNO. J Med Chem. 2013;56:1499–508.

    Article  CAS  PubMed  Google Scholar 

  192. Lundberg J, Weitzberg E, Shiva S, Gladwin M. The nitrate-nitrite-nitric oxide pathway in mammals. In: Bryan NS, Loscalzo J, editors. Nitrite and nitrate in human health and disease. New York: Humana Press; 2011.

    Google Scholar 

  193. Lundberg JO, Weitzberg E, Gladwin MT. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov. 2008;7:156–67.

    Article  CAS  PubMed  Google Scholar 

  194. Miljkovic JL, Kenkel I, Ivanovic-Burmazovic I, Filipovic MR. Generation of HNO and HSNO from nitrite by heme-iron-catalyzed metabolism with H2S. Angew Chem Int Edit. 2013;52:12061–4.

    Article  CAS  Google Scholar 

  195. Yong QC, Hu LF, Wang S, Huang D, Bian JS. Hydrogen sulfide interacts with nitric oxide in the heart: possible involvement of nitroxyl. Cardiovasc Res. 2010;88:482–91.

    Article  CAS  PubMed  Google Scholar 

  196. Yong QC, Cheong JL, Hua F, Deng LW, Khoo YM, Lee HS, et al. Regulation of heart function by endogenous gaseous mediators-crosstalk between nitric oxide and hydrogen sulfide. Antioxid Redox Signal. 2011;14:2081–91.

    Article  CAS  PubMed  Google Scholar 

  197. Koppenol W. Nitrosation, thiols, and hemoglobin: energetics and kinetics. Inorg Chem. 2012;51(10):5637–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Suárez SA, Bikiel DA, Wetzler D, Martí MA, Doctorovich F. Time-resolved electrochemical quantification of azanone (HNO) at low nanomolar level. Anal Chem. 2013;85:10262–9.

    Article  PubMed  CAS  Google Scholar 

  199. Poole DP, Pelayo JC, Cattaruzza F, Kuo YM, Gai G, Chiu JV, et al. Transient receptor potential ankyrin 1 is expressed by inhibitory motoneurons of the mouse intestine. Gastroenterology. 2011;141:565–75.

    Article  CAS  PubMed  Google Scholar 

  200. Wood KC, Batchelor AM, Bartus K, Harris KL, Garthwaite G, Vernon J, Garthwaite J. Picomolar nitric oxide signals from central neurons recorded using ultrasensitive detector cells. J Biol Chem. 2011;286:43172–81.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  201. Coletta C, Papapetropoulos A, Erdelyi K, Olah G, Modis K, Panopoulos P, et al. Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc Natl Acad Sci USA. 2012;109:9161–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Medani M, Collins D, Docherty NG, Baird AW, O’Connell PR, Winter DC. Emerging role of hydrogen sulfide in colonic physiology and pathophysiology. Inflamm Bowel Dis. 2011;17:1620–5.

    Article  PubMed  Google Scholar 

  203. Engel MA, Leffler A, Niedermirtl F, Babes A, Zimmermann K, Filipović MR, et al. TRPA1 and substance P mediate colitis in mice. Gastroenterol. 2011;141:1346–58.

    Article  CAS  Google Scholar 

  204. Engel MA, Khalil M, Siklosi N, Mueller-Tribbensee SM, Neuhuber WL, Neurath MF, et al. Opposite effects of substance P and calcitonin gene-related peptide in oxazolone colitis. Dig Liv Dis. 2012;44:24–9.

    Article  CAS  Google Scholar 

  205. Chattopadhyay M, Kodela R, Olson KR, Kashfi K. NOSH-aspirin (NBS-1120), a novel nitric oxide- and hydrogen sulfide-releasing hybrid is a potent inhibitor of colon cancer cell growth in vitro and in a xenograft mouse model. Biochem Biophys Res Commun. 2012;419(3):523–8.

    Article  CAS  PubMed  Google Scholar 

  206. Kodela R, Chattopadhyay M, Kashfi K. NOSH-aspirin: a novel nitric oxide-hydrogen sulfide-releasing hybrid: a new class of anti-inflammatory pharmaceuticals. ACS Med Chem Lett. 2012;3:257–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

The authors would like to thank professors Ivana Ivanovic-Burmazovic (FAU Erlangen-Nuremberg) and Vesna Niketic (University of Belgrade) for careful reading of the manuscript and helpful discussions. We are also grateful to the Friedrich-Alexander University Erlangen-Nuremberg (Emerging Field Initiative, MRIC) and to the French State in the frame of the ”Investments for the future” Programme IdEx Bordeaux, reference ANR-10-IDEX-03-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milos R. Filipovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Miljkovic, J.L., Filipovic, M.R. (2016). HNO/Thiol Biology as a Therapeutic Target. In: Batinić-Haberle, I., Rebouças, J., Spasojević, I. (eds) Redox-Active Therapeutics. Oxidative Stress in Applied Basic Research and Clinical Practice. Springer, Cham. https://doi.org/10.1007/978-3-319-30705-3_14

Download citation

Publish with us

Policies and ethics