Deconstructing the Big Valley Search Space Hypothesis

Part of the Lecture Notes in Computer Science book series (LNCS, volume 9595)

Abstract

The big valley hypothesis suggests that, in combinatorial optimisation, local optima of good quality are clustered and surround the global optimum. We show here that the idea of a single valley does not always hold. Instead the big valley seems to de-construct into several valleys, also called ‘funnels’ in theoretical chemistry. We use the local optima networks model and propose an effective procedure for extracting the network data. We conduct a detailed study on four selected TSP instances of moderate size and observe that the big valley decomposes into a number of sub-valleys of different sizes and fitness distributions. Sometimes the global optimum is located in the largest valley, which suggests an easy to search landscape, but this is not generally the case. The global optimum might be located in a small valley, which offers a clear and visual explanation of the increased search difficulty in these cases. Our study opens up new possibilities for analysing and visualising combinatorial landscapes as complex networks.

Keywords

Fitness landscapes Local optima networks Funnels Traveling salesman problem 

References

  1. 1.
    Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Concorde TSP solver (2003). http://www.math.uwaterloo.ca/tsp/concorde.html
  2. 2.
    Applegate, D., Cook, W., Rohe, A.: Chained Lin-Kernighan for large traveling salesman problems. INFORMS J. Comput. 15, 82–92 (2003)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Boese, K.D., Kahng, A.B., Muddu, S.: A new adaptive multi-start technique for combinatorial global optimizations. Oper. Res. Lett. 16, 101–113 (1994)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Csardi, G., Nepusz, T.: The igraph software package for complex network research. Int. J. Complex Syst. 1695, 1–9 (2006)Google Scholar
  5. 5.
    Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Softw. Pract. Exper. 21(11), 1129–1164 (1991)CrossRefGoogle Scholar
  6. 6.
    Hains, D.R., Whitley, L.D., Howe, A.E.: Revisiting the big valley search space structure in the TSP. J. Oper. Res. Soc. 62(2), 305–312 (2011)CrossRefGoogle Scholar
  7. 7.
    Kauffman, S., Levin, S.: Towards a general theory of adaptive walks on rugged landscapes. J. Theor. Biol. 128, 11–45 (1987)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kauffman, S.A.: The Origins of Order. Oxford University Press, New York (1993)Google Scholar
  9. 9.
    Klemm, K., Flamm, C., Stadler, P.F.: Funnels in energy landscapes. Eur. Phys. J. B 63(3), 387–391 (2008)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21, 498–516 (1973)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. In: Handbook of Metaheuristics, pp. 320–353 (2003)Google Scholar
  12. 12.
    Martin, O., Otto, S.W., Felten, E.W.: Large-step Markov chains for the TSP incorporating local search heuristics. Oper. Res. Lett. 11, 219–224 (1992)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Merz, P., Freisleben, B.: Memetic algorithms and the fitness landscape of the graph bi-partitioning problem. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, p. 765. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. 14.
    Miller, M.A., Wales, D.J.: The double-funnel energy landscape of the 38-atom Lennard-Jones cluster. J. Chem. Phys. 110(14), 6896–6906 (1999)CrossRefGoogle Scholar
  15. 15.
    Nešetřil, J., Milková, E., Nešetřilová, H.: Otakar Borůvka on minimum spanning tree problem translation of both the 1926 papers, comments, history. Discrete Math. 233(1–3), 3–36 (2001)MathSciNetMATHGoogle Scholar
  16. 16.
    Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford (2010)CrossRefMATHGoogle Scholar
  17. 17.
    Ochoa, G., Chicano, F., Tinos, R., Whitley, D.: Tunnelling crossover networks. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pp. 449–456. ACM (2015)Google Scholar
  18. 18.
    Ochoa, G., Tomassini, M., Verel, S., Darabos, C.: A study of NK landscapes’ basins and local optima networks. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO). pp. 555–562. ACM (2008)Google Scholar
  19. 19.
    Ochoa, G., Veerapen, N., Whitley, D., Burke, E.: The multi-funnel structure of TSP fitness landscapes: a visual exploration. In: EA 2015. LNCS. Springer (2015, to appear)Google Scholar
  20. 20.
    Ochoa, G., Verel, S., Daolio, F., Tomassini, M.: Local optima networks: a new model of combinatorial fitness landscapes. In: Richter, H., Engelbrecht, A. (eds.) Recent Advances in the Theory and Application of Fitness Landscapes. ECC, vol. 6, pp. 245–276. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  21. 21.
    Reeves, C.R.: Landscapes, operators and heuristic search. Ann. Oper. Res. 86, 473–490 (1999)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Reinelt, G.: TSPLIB - A traveling salesman problem library. ORSA J. Comput. 3(4), 376–384 (1991). http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Verel, S., Ochoa, G., Tomassini, M.: Local optima networks of NK landscapes with neutrality. IEEE Trans. Evol. Comput. 15(6), 783–797 (2011)CrossRefGoogle Scholar
  24. 24.
    Whitley, D., Hains, D., Howe, A.: Tunneling between optima: partition crossover for the traveling salesman problem. In: Proceedings Genetic and Evolutionary Computation Conference, GECCO 2009, pp. 915–922. ACM, New York (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Computing Science and MathematicsUniversity of StirlingStirlingScotland, UK

Personalised recommendations