Sim-EDA: A Multipopulation Estimation of Distribution Algorithm Based on Problem Similarity

  • Krzysztof MichalakEmail author
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9595)


In this paper a new estimation of distribution algorithm Sim-EDA is presented. This algorithm combines a multipopulation approach with distribution modelling. The proposed approach is to tackle several similar instances of the same optimization problem at once. Each subpopulation is assigned to a different instance and a migration mechanism is used for transferring information between the subpopulations. The migration process can be performed using one of the proposed strategies: two based on similarity between problem instances and one which migrates specimens between subpopulations with uniform probability. Similarity of problem instances is expressed numerically and the value of the similarity function is used for determining how likely a specimen is to migrate between two populations. The Sim-EDA algorithm is a general framework which can be used with various EDAs.

The presented algorithm has been tested on several instances of the Max-Cut and TSP problems using three different migration strategies and without migration. The results obtained in the experiments confirm, that the performance of the algorithm is improved when information is transferred between subpopulations assigned to similar instances of the problem. The migration strategy which transfers specimens between the most similar problem instances consistently produces better results than the algorithm without migration.


Estimation of distribution algorithms Multipopulation algorithms Combinatorial optimization 


  1. 1.
    Baluja, S.: Population-based incremental learning: a method for integrating genetic search based function optimization and competitive learning. Technical report, Pittsburgh (1994)Google Scholar
  2. 2.
    Bessaou, M., Petrowski, A., Siarry, P.: Island model cooperating with speciation for multimodal optimization. In: Schoenauer, M., et al. (eds.) Parallel Problem Solving from Nature PPSN VI. LNCS, vol. 1917, pp. 437–446. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Brest, J., et al.: Dynamic optimization using self-adaptive differential evolution. In: IEEE Congress on Evolutionary Computation, pp. 415–422. IEEE (2009)Google Scholar
  4. 4.
    Chen, J., Wineberg, M.: Enhancement of the shifting balance genetic algorithm for highly multimodal problems. In: Proceedings of the 2004 IEEE Congress on Evolutionary Computation, pp. 744–751. IEEE Press, Portland (2004)Google Scholar
  5. 5.
    delaOssa, L., Gámez, J.A., Puerta, J.M.: Migration of probability models instead of individuals: an alternative when applying the island model to EDAs. In: Yao, X. (ed.) PPSN 2004. LNCS, vol. 3242, pp. 242–252. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Derrac, J., et al.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)CrossRefGoogle Scholar
  7. 7.
    Dong, W., Yao, X.: Unified eigen analysis on multivariate Gaussian based estimation of distribution algorithms. Inf. Sci. 178(15), 3000–3023 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Giacobini et al., M., Preuß, M., Tomassini, M.: Effects of scale-free and small-world topologies on binary coded self-adaptive CEA. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2006. LNCS, vol. 3906, pp. 86–98. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Jozefowiez, N., Semet, F., Talbi, E.G.: Target aiming pareto search and its application to the vehicle routing problem with route balancing. J. Heuristics 13(5), 455–469 (2007)CrossRefGoogle Scholar
  10. 10.
    Lancucki, A., Chorowski, J., Michalak, K., Filipiak, P., Lipinski, P.: Continuous population-based incremental learning with mixture probability modeling for dynamic optimization problems. In: Corchado, E., Lozano, J.A., Quintián, H., Yin, H. (eds.) IDEAL 2014. LNCS, vol. 8669, pp. 457–464. Springer, Heidelberg (2014)Google Scholar
  11. 11.
    Li, J.P., et al.: A species conserving genetic algorithm for multimodal function optimization. Evol. Comput. 10(3), 207–234 (2002)CrossRefGoogle Scholar
  12. 12.
    Mezmaz, M.S., Melab, N., Talbi, E.: Using the multi-start and island models for parallel multi-objective optimization on the computational grid. In: Second IEEE International Conference on e-Science and Grid Computing, 2006. e-Science 2006, pp. 112–120 (2006)Google Scholar
  13. 13.
    Michalak, K.: Sim-EA: an evolutionary algorithm based on problem similarity. In: Corchado, E., Lozano, J.A., Quintián, H., Yin, H. (eds.) IDEAL 2014. LNCS, vol. 8669, pp. 191–198. Springer, Heidelberg (2014)Google Scholar
  14. 14.
    Michalak, K.: The Sim-EA algorithm with operator autoadaptation for the multiobjective firefighter problem. In: Ochoa, G., Chicano, F. (eds.) EvoCOP 2015. LNCS, vol. 9026, pp. 184–196. Springer, Heidelberg (2015)Google Scholar
  15. 15.
    Newman, A.: Max cut. In: Kao, M.Y. (ed.) Encyclopedia of Algorithms, pp. 1–99. Springer, New York (2008)Google Scholar
  16. 16.
    Nudelman, E., Leyton-Brown, K., H. Hoos, H., Devkar, A., Shoham, Y.: Understanding random SAT: beyond the clauses-to-variables ratio. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 438–452. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Peña, J.M., Lozano, J.A., Larrañaga, P.: Globally multimodal problem optimization via an estimation of distribution algorithm based on unsupervised learning of Bayesian Networks. Evol. Comput. 13(1), 43–66 (2005)CrossRefGoogle Scholar
  18. 18.
    Pelikan, M., Goldberg, D.E.: Hierarchical problem solving by the Bayesian optimization algorithm. In: Proceedings of the Genetic and Evolutionary Computation Conference 2000, pp. 267–274. Morgan Kaufmann (2000)Google Scholar
  19. 19.
    Santana, R., Mendiburu, A., Lozano, J.: Structural transfer using EDAs: an application to multi-marker tagging SNP selection. In: 2012 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8 (2012)Google Scholar
  20. 20.
    Santana, R., Larranaga, P., Lozano, J.A.: Side chain placement using estimation of distribution algorithms. Artif. Intell. Med. 39(1), 49–63 (2007)CrossRefGoogle Scholar
  21. 21.
    Shim, V.A., et al.: Enhancing the scalability of multi-objective optimization via restricted Boltzmann machine-based estimation of distribution algorithm. Inf. Sci. 248, 191–213 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    de Sousa, S., Haxhimusa, Y., Kropatsch, W.G.: Estimation of distribution algorithm for the Max-Cut problem. In: Kropatsch, W.G., Artner, N.M., Haxhimusa, Y., Jiang, X. (eds.) GbRPR 2013. LNCS, vol. 7877, pp. 244–253. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  23. 23.
    Talbi, E.-G., Mostaghim, S., Okabe, T., Ishibuchi, H., Rudolph, G., Coello Coello, C.A.: Parallel approaches for multiobjective optimization. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multiobjective Optimization. LNCS, vol. 5252, pp. 349–372. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  24. 24.
    Tsutsui, S., Fujimoto, Y., Ghosh, A.: Forking genetic algorithms: gas with search space division schemes. Evol. Comput. 5(1), 61–80 (1997)CrossRefGoogle Scholar
  25. 25.
    Uludag, G., et al.: A hybrid multi-population framework for dynamic environments combining online and offline learning. Soft Comput. 17(12), 2327–2348 (2013)CrossRefGoogle Scholar
  26. 26.
    Ursem, R.K.: Multinational GA optimization techniques in dynamic environments. In: Whitley, D., et al. (ed.) Genetic and Evolutionary Computation Conference, pp. 19–26. Morgan Kaufmann(2000)Google Scholar
  27. 27.
    Whitley, D., Rana, S., Heckendorn, R.B.: The island model genetic algorithm: on separability, population size and convergence. J. Comput. Inf. Technol. 7, 33–47 (1998)Google Scholar
  28. 28.
    Yan, W., Xiaoxiong, L.: An improved univariate marginal distribution algorithm for dynamic optimization problem. AASRI Procedia 1, 166–170 (2012). AASRI Conference on Computational Intelligence and BioinformaticsCrossRefGoogle Scholar
  29. 29.
    Yang, S., Yao, X.: Dual population-based incremental learning for problem optimization in dynamic environments. In: Proceedings of the 7th Asia Pacific Symposium on Intelligent and Evolutionary Systems, pp. 49–56 (2003)Google Scholar
  30. 30.
    Yuan, B., Orlowska, M., Sadiq, S.: Extending a class of continuous estimation of distribution algorithms to dynamic problems. Optim. Lett. 2(3), 433–443 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Zhong, X., Li, W.: A decision-tree-based multi-objective estimation of distribution algorithm. In: 2007 International Conference on Computational Intelligence and Security, pp. 114–118 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Information Technologies, Institute of Business InformaticsWroclaw University of EconomicsWroclawPoland

Personalised recommendations