Visuo-vestibular Contributions to Vertical Self-motion Perception in Healthy Adults

  • I. GiannopuluEmail author
  • P. Leboucher
  • G. Rautureau
  • I. Israël
  • R. Jouvent
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 39)


The intensity of the visuo-vestibular interaction, i.e., visuo-vestibular conflict, would influence upward self-motion and downward self-motion latencies and cardiovascular activity. In order to test this hypothesis, thirty five healthy adults aged 22 years in average have been immersed to a central visual motion via a HMD. During upward and downward self-motion perception, the engagement of vestibular saccular organs seems to contribute differently to latencies and cardiovascular activation depending on the direction of gravitational acceleration. Downward self-motion latencies (same direction acceleration) are shorter than upward self-motion latencies (opposite direction acceleration). In the same vein, cardiovascular autonomic activation, reflecting by heart rate, is lower for downward self-motion than for upward self-motion. Our results provide evidence that visuo-vestibular interaction would contribute to influence both latencies and cardiovascular variation in vertical self-motion perception.


Visuo-vestibular interaction Vertical self-motion Cardiovascular activity Adults HMD 



To all the participants, the CNRS and the National Department of Education and Research.


  1. 1.
    Dichgans, J., Brandt, T.: Visual-vestibular interaction: effects on self motion perception and postural control. In: Held, R., Leibowitz, H.W., Teuber H.L. (eds.) Handbook of Sensory Physiology, vol. VIII, pp. 755–804. Springer, New York (1978)Google Scholar
  2. 2.
    Mergner, T., Becker, W.: Perception of horizontal self-motion: multisensory and cognitive aspects. In: Warren, R., Wertheim, A.H. (eds.) Perception and Control of Self-motion, pp. 219–263. Erlbaum, Hillsdale, NJ (1990)Google Scholar
  3. 3.
    Berthoz, A.: Le sens du mouvement. Odile Jacob, Paris (1997)Google Scholar
  4. 4.
    Howard, I.P.: The vestibular system. In: Boff, K.R., Kaufman, L., Thomas, J.P. (eds.) Handbook of Perception and Human Performance, vol. I, pp. 11-3 to 11-26. Wiley and Sons, New York (1986)Google Scholar
  5. 5.
    Giannopulu, I., Lepecq, J.C.: Linear vection chronometry along spinal and sagittal body-motion. Perception 27, 363–449 (1998)CrossRefGoogle Scholar
  6. 6.
    Giannopulu, I.: Contribution à la compréhension des représentations multimodales chez l’homme sain et chez des patients avec atteinte neuropsychologique: une perspective “lifespan”. Habilitation à Diriger des Recherches en Sciences de la Vie et de la Santé-Neurosciences Cognitives, Paris VI (2011)Google Scholar
  7. 7.
    Bottini, G., Sterzi, R., Paulesu, E., Vallar, G., Cappa, S.F., Ermiono, F., Passingham, R.E., Frith, C.D., Frackowiak, R.S.J.: Identification of the central vestibular projections in man: a positron emission tomography activation study. Exp. Brain Res. 99, 164–169 (1994)CrossRefGoogle Scholar
  8. 8.
    Baudonnière, P.M., de Waele, C., Tran Ba Huy, P., Vidal P.P.: Vestibular evoked responses before and immediately after uni-lateral vestibular neurectomy in human. In: Collard, M., Jeannerod M, Christen Y (eds) The vestibular cortex. Irvinn, Strasbourg, pp 89–102, (1996)Google Scholar
  9. 9.
    de Waele, C., Tran Ba Huy, P., Diard, J.P., Freyss, G., Vidal, P.P.: Saccular dysfunction in Meniere’s disease. Am. J. Otol. 20, 223–232 (1999)Google Scholar
  10. 10.
    Straube, A., Brandt, T.: Importance of the visual and vestibular cortex for the self-motion perception in man (circularvection). Human Neurobiol. 6, 211–218 (1987)Google Scholar
  11. 11.
    Büttner, U., Straube, A.: Ego and object-motion perception: where does it take place? Behav. Brain Res. 17, 316–317 (1994)Google Scholar
  12. 12.
    Deutschländer, A., Bense, S., Stephan, T., Schwaiger, M., Dieterich, M., Brandt, T.: Rollvection versus linearvection: comparison of brain activations in PET. Human Brain Marring 21(3), 143–153 (2004)CrossRefGoogle Scholar
  13. 13.
    Becker-Bense, S., Buchholz, H. G., zu Eulenburg, P., Best, C., Bartenstein, P. Schreckenberger, M. and Dieterich, M.: Ventral and dorsal streams processing visual motion perception (FDG-PET study). BMC Neurosci. 16, 13–81 (2012)Google Scholar
  14. 14.
    Giannopulu, I., Bertin, R.J.V., Brémond, R., Kapoula, Z., Espié, S.: Visual strategies in virtual and pre-recording environments. Adv. Transp. Stud. Int. J. Sect. B 14 (2008)Google Scholar
  15. 15.
    Napadow, V., Sheehan, J.D., Kim, J., Lacount, L.T., Park, K., Kaptchuk, T.J., Rosen, B.R., Kuo, B.: The brain circuitry underlying the temporal evolution of nausea in humans. Cereb. Cortex 23(4), 806–813 (2013)CrossRefGoogle Scholar
  16. 16.
    Cheung, B.S.K., Howard, I.P., Nedzelski, J.M., Landolt, J.P.: Circular vection about horizontal axes in bilateral labyrinthine-defective subjects. Acta Oto-laryngologica (Stockh) 108, 336–344 (1989)CrossRefGoogle Scholar
  17. 17.
    Wong, S.C.P., Frost, B.J.: The effect of visual-vestibular conflict on the latency of steady-state visually induced subjective rotation. Percept. Psychophys. 30(3), 228–236 (1981)CrossRefGoogle Scholar
  18. 18.
    Young, L.R., Shelhamer, M.: Weightlessness enhances the relative contribution of visually-induced self motion. In: Warren, R., Wertheim, A.H. (eds.) Perception and Control of Self-motion, pp. 523–538. Erlbaum, Hillsdale, NJ (1990)Google Scholar
  19. 19.
    Cheung, B.S.K., Howard, I.P., Money, K.E.: Visually-induced tilt during parabolic flights. Exp. Brain Res. 81, 391–397 (1990)CrossRefGoogle Scholar
  20. 20.
    Fluur, E.: The interaction between the utricle and the saccule. Acta Otolaryng 69, 17–24 (1970)CrossRefGoogle Scholar
  21. 21.
    De Saedeleer, C., Vidal, M., Lipshits, M., Bengoetxea, A., Cebolla, A.M., Berthoz, A., et al.: Weightlessness alters up/down asymmetries in the perception of self-motion. Exp. Brain Res. 226, 95–106 (2013)CrossRefGoogle Scholar
  22. 22.
    Pfeiffer, C., Serino, A., Blanke, O.: The vestibular system: a spatial reference for bodily self-consciousness. Front. Integr., Neurosci. 17, 8–31 (2014)Google Scholar
  23. 23.
    Olufsen, M.S., Alston, A.V., Tran, H.T., Ottesen, J.T., Novak, O.V.: modeling heart rate regulation—Part I: Sit-to-stand versus head-up tilt. Cardiovasc. Eng. 8(2), 73–87 (2008)CrossRefGoogle Scholar
  24. 24.
    Yates, Y.B.J., Aoki, M., Burchill, P., Bronstein, A.M., Gresty, M.A.: Cardiovascular responses elicited by linear acceleration in humans. Exp. Brain Res. 125, 476–484 (1999)CrossRefGoogle Scholar
  25. 25.
    Wright, G.W.: Linear vection in virtual environments can be strengthened by discordant inertial input. 1157–1160. In: 31th Annual International Conference of the IEEE EMBS Minneapolis, Minnesota, USA, 2–6 Sept 2009Google Scholar
  26. 26.
    Zacharias, G.L., Young, L.R.: Influence of combined visual and vestibular cues on human perception and control of horizontal rotation. Exp. Brain Res. 41, 159–171 (1981)CrossRefGoogle Scholar
  27. 27.
    Indovina, I., Maffei, V., Pauwels, K., Macaluso, E., Orban, G.A., Lacquaniti, F.: Simulated self-motion in a visual gravity field: sensitivity to vertical and horizontal heading in the human brain. Neuroimage 71, 114–124 (2013)CrossRefGoogle Scholar
  28. 28.
    McIntyre, J., Zago, M., Berthoz, A., Lacquaniti, F.: Does the brain model Newton’s laws? Nat. Neurosci. 4, 693–694 (2001)CrossRefGoogle Scholar
  29. 29.
    Indovina, I., Maffei, V., Bosco, G., Zago, M., Macaluso, E., Lacquaniti, F.: Representation of visual gravitational motion in the human vestibular cortex. Science 308, 416–419 (2005)CrossRefGoogle Scholar
  30. 30.
    Yates, B.J., Bolton, P.S., Macefield, V.G.: Vestibulo-sympathetic responses. Compr Physiol. 4(2), 851–887 (2014)CrossRefGoogle Scholar
  31. 31.
    Ray, C.A., Monahan, K.D.: Aging attenuates the vestibulosympathetic reflex in humans. Circulation 26, 105(8), 956–961 (2002)Google Scholar
  32. 32.
    Hu, S., Grant, W.F., Stern, R.M., Koch, K.L.: Motion sickness severity and physiological correlates during repeated exposures to a rotating optokinetic drum. Aviat. Space Environ. Med. 62, 308–314 (1991)Google Scholar
  33. 33.
    Wood, S.J., Reschke, M.F., Sarmiento, L.A., Clement, G.: Tilt and translation motion perception during off-vertical axis rotation. Exp. Brain Res. 182, 365–377 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • I. Giannopulu
    • 1
    Email author
  • P. Leboucher
    • 1
  • G. Rautureau
    • 1
  • I. Israël
    • 1
  • R. Jouvent
    • 1
  1. 1.Virtual Reality Prism PlatformIHU-a-Brain and Spine Institute (ICM), UPMC, CNRS U7225, Groupe Hospitalier Pitié-SalpêtrièreParisFrance

Personalised recommendations