Application of Nonlinear Dynamics to Human Knee Movement on Plane and Inclined Treadmill

  • D. Tarnita
  • M. Georgescu
  • D. N. Tarnita
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 39)


The objective of this study is to quantify and investigate nonlinear motion of the human knee joint for a sample of 7 healthy subjects on plane treadmill and inclined treadmill with an angle of 10° and for both knees of a sample of 3 patients who suffer of osteoarthritis, only on the plane treadmill, using nonlinear dynamics stability analysis. The largest Lyapunov exponent (LLE) and correlation dimensions are calculated as chaotic measures from the experimental time series of the flexion-extension angle of human knee joint. Larger values of LLEs obtained for patients group suffering by osteoarthritis are associated with more divergence and increase of knee variability, while smaller values obtained for healthy subjects reflect increase of local stability, less divergence and variability, less sensitivity to perturbations and higher resistance to stride-to-stride variability. The use of nonlinear tools may provide additional insight on the nature of the step-to-step fluctuations present in human and robotic locomotion.


Human knee Osteoarthritic knee Treadmill Nonlinear dynamics Lyapunov exponents 


  1. 1.
    Hausdorff, J.M., Rios, D.A., Edelberg, H.K.: Gait variability and fall risk in community-living older adults: a 1-year prospective study. Arch. Phys. Med. Rehabil. 82(8), 1050–1056 (2001)CrossRefGoogle Scholar
  2. 2.
    Dingwell, J.B., Cusumano, J.P., Cavanagh, P.R., Sternad, D.: Local dynamic stability versus kinematic variability of continuous overground and treadmill walking. J. Biomech. Eng. 123(1), 27–32 (2001)CrossRefGoogle Scholar
  3. 3.
    Hausdorff, J.M.: Gait dynamics, fractals and falls: finding meaning in the stride to-stride fluctuations of human walking. Hum. Mov. Sci. 26(4), 555–589 (2007)CrossRefGoogle Scholar
  4. 4.
    Menz, H.B., Lord, S.R., et al.: Age-related differences in walking stability. Age Ageing 32(2), 137–142 (2003)CrossRefGoogle Scholar
  5. 5.
    Owings, T.M., Grabiner, M.D.: Variability of step kinematics in young and older adults. Gait Posture 20(1), 26–29 (2004)CrossRefGoogle Scholar
  6. 6.
    Plitea, N., Pisla, D., On the kinematics of a new parallel robot for brachytherapy. Proc. Rom. Acad. Ser. A: Math. Phys. Tech. Sci. Inf. Sci. 15(4), 354–361 (2014)Google Scholar
  7. 7.
    Tarnita, D., Marghitu, D.: Analysis of a hand arm system. Robot. Comput.-Integr. Manuf. 29(6), 493–501 (2013)CrossRefGoogle Scholar
  8. 8.
    Pisla, D., Szilaghyi, A., Vaida, C., Plitea, N.: Kinematics and workspace modeling of a new hybrid robot used in minimally invasive surgery. Robot. Comput.-Integr. Manuf. 29(2), 463–474 (2013)CrossRefGoogle Scholar
  9. 9.
    Ottaviano, E., et al.: An experimental evaluation of human walking. In: International Congress Design and Modelling of Mechanical Systems, Hammamet, 16–18 Mar 2009Google Scholar
  10. 10.
    Winter, D.A.: Biomechanical motor patterns in normal walking. J. Mot. Behav. 15(4), 302–330 (1983)CrossRefGoogle Scholar
  11. 11.
    Moe-Nilssen, R., Helbostad, J.L.: Interstride trunk acceleration variability but not step width variability can differentiate between fit and frail older adults. Gait Posture 21(2), 164–170 (2005)CrossRefGoogle Scholar
  12. 12.
    Dingwell, J.B., Marin, L.C.: Kinematic variability and local dynamic stability of upper body motions when walking at different speeds. J. Biomech. 39(3), 444–452 (2006)CrossRefGoogle Scholar
  13. 13.
    Jordan, K., Challis, J.H., et al.: Walking speed influences on gait cycle variability. Gait Posture (2006). doi: 10.1016/j.gaitpost.2006.08.010 Google Scholar
  14. 14.
    Oberg, T., Karsznia, A., et al.: Joint angle parameters in gait: reference data for normal subjects, 10–79 years of age. J. Rehab. Res. Develop. 31(3), 199–213 (1994)Google Scholar
  15. 15.
    Terrier, Ph, Dériaz, O.: Kinematic variability, fractal dynamics and local dynamic stability of treadmill walking. J. NeuroEngineering Rehabil. 8, 1–13 (2011)CrossRefGoogle Scholar
  16. 16.
    Winter, D.A.: The Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological, 2nd edn. Waterloo, Canada (1991)Google Scholar
  17. 17.
    Davis, R., Ounpuu, S., Tyburski, D., Gage, J.: A gait analysis data collection and reduction technique. Hum. Mov. Sci. 10, 575–587 (1991)CrossRefGoogle Scholar
  18. 18.
    Tarnita, D., Catana, M., Tarnita, D.N.: Nonlinear analysis of normal human gait for different activities with application to bipedal locomotion. Ro. J. Tech. Sci. Appl. Mech. 58(1–2), 177–192 (2013)Google Scholar
  19. 19.
    Kawamura, K., Tokuhiro, A., Takechi, H.: Gait analysis of slope walking: a study of step length, stride width, time factors and deviation in the centre of pressure. Acta Med. Okayama 45(3), 179–184 (1991)Google Scholar
  20. 20.
    Leroux, A., Fung, J., Barbeau, H.: Postural adaptation to walking on inclined surfaces: I. Normal strategies. Gait Posture 15(1), 64–74 (2002)CrossRefGoogle Scholar
  21. 21.
    Sun, J., Walters, M., Svensson, N., Lloyd, D.: The influence of surface slope on human gait characteristics: a study of urban pedestrians walking on an inclined surface. Ergonomics 39(4), 677–692 (1996)CrossRefGoogle Scholar
  22. 22.
    Kang, H.G.: Kinematic and motor variability and stability during gait: effects of age, walking speed and segment height, Doctoral Thesis, The University of Texas, Dec 2007Google Scholar
  23. 23.
    Dingwell, J.B., Cusumano, J.P.: Nonlinear time series analysis of normal and pathological human walking. Chaos 10, 848–863 (2000)CrossRefzbMATHGoogle Scholar
  24. 24.
    Yang, C., Wu, Q.: On Stabilization of bipedal robots during disturbed standing using the concept of Lyapunov exponents. Robotica 24(5), 621–624 (2006)CrossRefGoogle Scholar
  25. 25.
    Han, J., Moussavi, Z.: Application of nonlinear dynamics to human postural control system. Eng. Med. Biol. Soc. Conf. Shanghai, 1–4 Sept 2005Google Scholar
  26. 26.
    Abarbanel, H.D.: Analysis of Observed Chaotic Data. Springer, New York, Inc. (1996)Google Scholar
  27. 27.
    Wolf, A., Swift, J., Swinney, H., Vastano, J.: Determining Lyapunov exponents from a time series. Physica 16D (1995)Google Scholar
  28. 28.
    Nehmzow, U., Walker, K.: Quantitative description of robot-environment interaction using chaos theory. In: Proceedings of ECMR 03, Warsaw (2003)Google Scholar
  29. 29.
    Small, M., Tse, C.: Applying the method of surrogate data to cyclic time series. Physica D 164, 187–201 (2002)CrossRefzbMATHGoogle Scholar
  30. 30.
    Packard, N.H., Crutchfield, J.P., et al.: Geometry from a time series. Phys. Rev. Lett. 45, 712–716 (1980)CrossRefGoogle Scholar
  31. 31.
    Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley-Interscience, NY (1981)zbMATHGoogle Scholar
  32. 32.
    Takens, F.: Detecting strange attractors in turbulence. In: Rand, D.A., Young, L.S. (eds.) Lecture Notes in Mathematics, vol. 898, pp. 366–381 (1981)Google Scholar
  33. 33.
    Kennel, M.B., Brown, R., Abarbanel, H.D.I.: Determining embedding dimension for phase space reconstruction using a geometrical construction. Phys. Rev. A 45, 3403–3411 (1992)CrossRefGoogle Scholar
  34. 34.
    Perc, M.: The dynamics of human gait. Eur. J. Phys. 26, 525–530 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Boccaletti, S., Valladares, et al.: Reconstructing embedding spaces of coupled dynamical systems from multivariate data. Phys. Rev. E 65(035204(R)), 1–4 (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of CraiovaCraiovaRomania
  2. 2.University of Medicine and PharmacyCraiovaRomania

Personalised recommendations