Skip to main content

Variable Stiffness Mechanism in Robotized Interventional Radiology

  • Conference paper
  • First Online:
New Trends in Medical and Service Robots

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 39))

Abstract

During the last two decades, a large number of robotic assistants have been developed to help surgeons place surgical tools. Until now, research in this field has mostly focused on rigid robotic structures, which make safety issues difficult to deal with. In this paper, we consider a new collaborative manipulation approach based on a variable stiffness mechanism. By controlling the stiffness perceived by the user when he/she manipulates the device, it then becomes possible to guide his/her gesture in a safe way. This strategy is first presented, before detailing the design, optimization and experimental validation of the proposed mechanism based on leaf springs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bayle, B., Piccin, O., Barbé, L., Renaud, P., Mathelin, M.: Image-guided interventions and robotics. In: Garbey, M., Bass, B.L., Collet, C., Mathelin, M., Tran-Son-Tay, R. (eds.) Computational Surgery and Dual Training, pp. 191–205. Springer, US (2010)

    Chapter  Google Scholar 

  2. Choi, J., Hong, S., Lee, W., Kang, S., Kim, M.: A robot joint with variable stiffness using leaf springs. IEEE Trans. Robot. 27(2), 229–238 (2011)

    Article  Google Scholar 

  3. Cleary, K., Melzer, A., Watson, V., Kronreif, G., Stoianovici, D.: Interventional robotic systems: applications and technology state-of-the-art. Minim. Invasive Ther. 15(2), 101–113 (2006)

    Article  Google Scholar 

  4. Esteveny, L., Barbé, L., Bayle, B.: A novel actuation technology for safe physical human-robot interactions. In: IEEE International Conference on Robotics and Automation, pp. 450–457. Hong Kong, China (2014)

    Google Scholar 

  5. Gere, J.: Mechanics of Materials. Thomson, Brools/Cole (2004)

    Google Scholar 

  6. Henein, S.: Conception des structures articulées à guidages flexibles de haute précision. Ph.D. thesis, École polytechnique fédérale de Lausanne (2000)

    Google Scholar 

  7. Howell, L.: Compliant Mechanisms. Wiley (2001)

    Google Scholar 

  8. Jafari, A., Tsagarakis, N., Caldwell, D.: Awas-ii: a new actuator with adjustable stiffness based on the novel principle of adaptable pivot point and variable lever ratio. In: IEEE International Conference on Robotics and Automation, pp. 4638–4643. Shanghai, China (2011)

    Google Scholar 

  9. Maurin, B., Bayle, B., Piccin, O., Gangloff, J., de Mathelin, M., Doignon, C., Zanne, P., Gangi, A.: A patient-mounted robotic platform for ct-scan guided procedures. IEEE Trans. Biomed. Eng. 55(10), 2417–2425 (2008). doi:10.1109/TBME.2008.919882

    Article  Google Scholar 

  10. Riviere, C., Gangloff, J., de Mathelin, M.: Robotic compensation of biological motion to enhance surgical accuracy. Proc. IEEE 94(9), 1705–1716 (2006)

    Article  Google Scholar 

  11. Rosenberg, L.: Virtual fixtures: Perceptual tools for telerobotic manipulation. In: IEEE Virtual Reality Annual International Symposium, pp. 76–82 (1993). doi:10.1109/VRAIS.1993.380795

  12. Stoianovici, D.: Urobotics—urology robotics at Johns Hopkins. Comput. Aided Surg. 6(6), 360–369 (2001)

    Article  Google Scholar 

  13. Swanson, D., Book, W.: Path-following control for dissipative passive haptic displays. In: 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 101–108. Los Angeles, CA, USA (2003). doi:10.1109/HAPTIC.2003.1191245

  14. Troccaz, J. (ed.): Medical Robotics. Wiley (2012)

    Google Scholar 

  15. Tsagarakis, N., Sardellitti, I., Caldwell, D.: A new variable stiffness actuator (compact-vsa): Design and modelling. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 378–383. San Francisco, USA (2011)

    Google Scholar 

  16. Van Ham, R.: Compliant actuation for biologically inspired bipedal walking robots. Ph.D. thesis, Vrije Universiteit Brussel (2006)

    Google Scholar 

  17. Van Ham, R., Sugar, T., Vanderborght, B., Hollander, K., Lefeber, D.: Compliant actuator designs. Review of actuators with passive adjustable compliance/controllable stiffness for robotic applications. IEEE Robot. Autom. Mag. 16(3), 81–94 (2009)

    Google Scholar 

  18. Vanderborght, B., Albu-Schaeffer, A., Bicchi, A., Burdet, E., Caldwell, D., Carloni, R., Catalano, M., Eiberger, O., Friedl, W., Ganesh, G., Garabini, M., Grebenstein, M., Grioli, G., Haddadin, S., Hoppner, H., Jafari, A., Laffranchi, M., Lefeber, D., Petit, F., Stramigioli, S., Tsagarakis, N., Van Damme, M., Van Ham, R., Visser, L., Wolf, S.: Variable impedance actuators: a review. Robot. Auton. Syst. 61(12), 1601–1614 (2013)

    Article  Google Scholar 

  19. Wang, R.J., Huang, H.P.: Mechanically stiffness-adjustable actuator using a leaf spring for safe physical human-robot interaction. Mechanika 18(1), 77–83 (2012)

    Article  Google Scholar 

  20. Wolf, S., Hirzinger, G.: A new variable stiffness design: Matching requirements of the next robot generation. In: IEEE International Conference on Robotics and Automation, pp. 1741–1746. Pasadena, CA, USA (2008)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the Region Alsace, the Institute of image-guided surgery (IHU Strasbourg) and the Foundation ARC. This work has been sponsored by the French government research program Investissements dAvenir through the Robotex Equipment of Excellence and Labex CAMI (ANR- 10-EQPX-44 and ANR-11-LABX-0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Esteveny .

Editor information

Editors and Affiliations

Appendix: \(c_{i}\) Expressions

Appendix: \(c_{i}\) Expressions

$$\begin{aligned} c_1&= 8 E I (\delta -\lambda ) \delta [ (2 \delta +6 \lambda ) p^3+ (9 r \lambda +9 \lambda r-18 \lambda ^2+3 \delta r+3 \delta r) p^2 +(18 \lambda r^2-18 \lambda ^2 r-18 r \lambda ^2 \\&+18 \lambda ^3+6 \delta r^2-6 \lambda ^2 \delta ) p + (-6 \lambda ^4-3 r \lambda ^2 \delta -3 \delta \lambda ^2 r+9 \lambda ^3 r-18 r^2 \lambda ^2+4 \lambda ^3 \delta +9 \lambda ^3 r)] \\ c_4&= -\delta (\lambda -p)^3 (\delta -\lambda ) (3 \delta \lambda +\delta p-3 \lambda ^2+3 \lambda p) \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Esteveny, L., Barbé, L., Bayle, B. (2016). Variable Stiffness Mechanism in Robotized Interventional Radiology. In: Wenger, P., Chevallereau, C., Pisla, D., Bleuler, H., Rodić, A. (eds) New Trends in Medical and Service Robots. Mechanisms and Machine Science, vol 39. Springer, Cham. https://doi.org/10.1007/978-3-319-30674-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30674-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30673-5

  • Online ISBN: 978-3-319-30674-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics