Advertisement

Variable Stiffness Mechanism in Robotized Interventional Radiology

  • L. Esteveny
  • L. Barbé
  • B. Bayle
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 39)

Abstract

During the last two decades, a large number of robotic assistants have been developed to help surgeons place surgical tools. Until now, research in this field has mostly focused on rigid robotic structures, which make safety issues difficult to deal with. In this paper, we consider a new collaborative manipulation approach based on a variable stiffness mechanism. By controlling the stiffness perceived by the user when he/she manipulates the device, it then becomes possible to guide his/her gesture in a safe way. This strategy is first presented, before detailing the design, optimization and experimental validation of the proposed mechanism based on leaf springs.

Keywords

Variable stiffness mechanism Compliant mechanism Leaf spring Interventional radiology Collaborative manipulation 

Notes

Acknowledgments

The authors acknowledge the support of the Region Alsace, the Institute of image-guided surgery (IHU Strasbourg) and the Foundation ARC. This work has been sponsored by the French government research program Investissements dAvenir through the Robotex Equipment of Excellence and Labex CAMI (ANR- 10-EQPX-44 and ANR-11-LABX-0004).

References

  1. 1.
    Bayle, B., Piccin, O., Barbé, L., Renaud, P., Mathelin, M.: Image-guided interventions and robotics. In: Garbey, M., Bass, B.L., Collet, C., Mathelin, M., Tran-Son-Tay, R. (eds.) Computational Surgery and Dual Training, pp. 191–205. Springer, US (2010)CrossRefGoogle Scholar
  2. 2.
    Choi, J., Hong, S., Lee, W., Kang, S., Kim, M.: A robot joint with variable stiffness using leaf springs. IEEE Trans. Robot. 27(2), 229–238 (2011)CrossRefGoogle Scholar
  3. 3.
    Cleary, K., Melzer, A., Watson, V., Kronreif, G., Stoianovici, D.: Interventional robotic systems: applications and technology state-of-the-art. Minim. Invasive Ther. 15(2), 101–113 (2006)CrossRefGoogle Scholar
  4. 4.
    Esteveny, L., Barbé, L., Bayle, B.: A novel actuation technology for safe physical human-robot interactions. In: IEEE International Conference on Robotics and Automation, pp. 450–457. Hong Kong, China (2014)Google Scholar
  5. 5.
    Gere, J.: Mechanics of Materials. Thomson, Brools/Cole (2004)Google Scholar
  6. 6.
    Henein, S.: Conception des structures articulées à guidages flexibles de haute précision. Ph.D. thesis, École polytechnique fédérale de Lausanne (2000)Google Scholar
  7. 7.
    Howell, L.: Compliant Mechanisms. Wiley (2001)Google Scholar
  8. 8.
    Jafari, A., Tsagarakis, N., Caldwell, D.: Awas-ii: a new actuator with adjustable stiffness based on the novel principle of adaptable pivot point and variable lever ratio. In: IEEE International Conference on Robotics and Automation, pp. 4638–4643. Shanghai, China (2011)Google Scholar
  9. 9.
    Maurin, B., Bayle, B., Piccin, O., Gangloff, J., de Mathelin, M., Doignon, C., Zanne, P., Gangi, A.: A patient-mounted robotic platform for ct-scan guided procedures. IEEE Trans. Biomed. Eng. 55(10), 2417–2425 (2008). doi: 10.1109/TBME.2008.919882 CrossRefGoogle Scholar
  10. 10.
    Riviere, C., Gangloff, J., de Mathelin, M.: Robotic compensation of biological motion to enhance surgical accuracy. Proc. IEEE 94(9), 1705–1716 (2006)CrossRefGoogle Scholar
  11. 11.
    Rosenberg, L.: Virtual fixtures: Perceptual tools for telerobotic manipulation. In: IEEE Virtual Reality Annual International Symposium, pp. 76–82 (1993). doi: 10.1109/VRAIS.1993.380795
  12. 12.
    Stoianovici, D.: Urobotics—urology robotics at Johns Hopkins. Comput. Aided Surg. 6(6), 360–369 (2001)CrossRefGoogle Scholar
  13. 13.
    Swanson, D., Book, W.: Path-following control for dissipative passive haptic displays. In: 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 101–108. Los Angeles, CA, USA (2003). doi: 10.1109/HAPTIC.2003.1191245
  14. 14.
    Troccaz, J. (ed.): Medical Robotics. Wiley (2012)Google Scholar
  15. 15.
    Tsagarakis, N., Sardellitti, I., Caldwell, D.: A new variable stiffness actuator (compact-vsa): Design and modelling. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 378–383. San Francisco, USA (2011)Google Scholar
  16. 16.
    Van Ham, R.: Compliant actuation for biologically inspired bipedal walking robots. Ph.D. thesis, Vrije Universiteit Brussel (2006)Google Scholar
  17. 17.
    Van Ham, R., Sugar, T., Vanderborght, B., Hollander, K., Lefeber, D.: Compliant actuator designs. Review of actuators with passive adjustable compliance/controllable stiffness for robotic applications. IEEE Robot. Autom. Mag. 16(3), 81–94 (2009)Google Scholar
  18. 18.
    Vanderborght, B., Albu-Schaeffer, A., Bicchi, A., Burdet, E., Caldwell, D., Carloni, R., Catalano, M., Eiberger, O., Friedl, W., Ganesh, G., Garabini, M., Grebenstein, M., Grioli, G., Haddadin, S., Hoppner, H., Jafari, A., Laffranchi, M., Lefeber, D., Petit, F., Stramigioli, S., Tsagarakis, N., Van Damme, M., Van Ham, R., Visser, L., Wolf, S.: Variable impedance actuators: a review. Robot. Auton. Syst. 61(12), 1601–1614 (2013)CrossRefGoogle Scholar
  19. 19.
    Wang, R.J., Huang, H.P.: Mechanically stiffness-adjustable actuator using a leaf spring for safe physical human-robot interaction. Mechanika 18(1), 77–83 (2012)CrossRefGoogle Scholar
  20. 20.
    Wolf, S., Hirzinger, G.: A new variable stiffness design: Matching requirements of the next robot generation. In: IEEE International Conference on Robotics and Automation, pp. 1741–1746. Pasadena, CA, USA (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.PMAKatholieke Universiteit LeuvenLeuvenBelgium
  2. 2.EAVRICube-Strasbourg UniversityStrasbourgFrance
  3. 3.Institute of Image-Guided SurgeryStrasbourgFrance

Personalised recommendations