Advertisement

Morphological Optimization of Prosthesis’ Finger for Precision Grasping

  • J. L. Ramírez
  • A. Rubiano
  • N. Jouandeau
  • L. Gallimard
  • O. Polit
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 39)

Abstract

In this paper, we present the morphological optimization of our tendon driven under-actuated robotic hand prosthesis’ finger, to improve precision grasping. The optimization process is performed with a black box optimizer that considers simultaneously kinematic and dynamic constraints. The kinematic is computed with the Denhavit-Hartenberg parameterization modified by Khalil and Kleinfinger and the dynamic is computed from the virtual displacements and the virtual works. All these constraints are considered as a fitness function to evaluate the best morphological configuration of the finger. This approach gives a way to introduce and improve soft and flexible considerations for the grasping robots such as hands and grippers. Theoretical and experimental results show that flexible links combined with morphological optimization, lead in more precise grasping. The results of the optimization, show us an important improvement related to size, torque and consequently energy consumption.

Keywords

Morphological optimization Mechanisms prehension Precision grasping Soft robotic 

Notes

Acknowledgments

Through this acknowledgement, we express our sincere gratitude to the Université Paris Lumières UPL for the financial support through the project PROMAIN This work has been partly supported by Université Paris Lumières UPL and by a Short Term Scientific Mission funding from LEME-UPO-EA4416/LIASD-UP8-EA4383. We also acknowledge Colciencias—Colombia and the Universidad Militar Nueva Granada for the financial support of the Ph.D. students.

References

  1. 1.
    Nurzaman, S., Iida, F., Laschi, C., Ishiguro, A., Wood, R.: Soft robotics [tc spotlight]. Robot. Autom. Mag. IEEE 20(3), 24–95 (2013)CrossRefGoogle Scholar
  2. 2.
    Andrianesis, K., Tzes, A.: Design of an innovative prosthetic hand with compact shape memory alloy actuators. In: 21st Mediterranean Conference on Control Automation (MED), pp. 697–702 (2013)Google Scholar
  3. 3.
    Palli, G., Scarcia, U., Melchiorri, C., Vassura, G.: Development of robotic hands: the UB hand evolution. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5456–5457 (2012)Google Scholar
  4. 4.
    Ficuciello, F., Palli, G., Melchiorri, C., Siciliano, B.: Postural synergies of the UB hand IV for human-like grasping. Robot. Auton. Syst. 62(4), 515–527 (2014)CrossRefGoogle Scholar
  5. 5.
    Ajoudani, A., Godfrey, S., Catalano, M., Grioli, G., Tsagarakis, N., Bicchi, A.: Teleimpedance control of a synergy-driven anthropomorphic hand. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1985–1991 (2013)Google Scholar
  6. 6.
    Chitta, S., Sucan, I., Cousins, S.: Moveit! [ros topics]. IEEE Robot. Autom. Mag. 19(1), 18–19 (2012)CrossRefGoogle Scholar
  7. 7.
    Jouandeau, N., Hugel, V.: Enhancing humanoids walking skills through morphogenesis evolution method. In: Brugali, D., Broenink, J., Kroeger, T., MacDonald, B. (eds.) Simulation, Modeling, and Programming for Autonomous Robots. Lecture Notes in Computer Science, vol. 8810, pp. 412–423. Springer International Publishing (2014)Google Scholar
  8. 8.
    Coulom, R.: Clop: confident local optimization for noisyblack-box parameter tuning. In: van den Herik, H., Plaat, A. (eds.) Advances in Computer Games. Lecture Notes in Computer Science, vol. 7168, pp. 146–157. Springer, Berlin Heidelberg (2012)Google Scholar
  9. 9.
    Harada, K., Anzai, T.: Multiple sweeping using quaternion operations. Comput. Aided Des. 34(11), 815–822 (2002)CrossRefGoogle Scholar
  10. 10.
    Hugel, V., Jouandeau, N.: Automatic generation of humanoids geometric model parameters. In: RoboCup 2013: Robot World Cup XVII, pp. 408–419. Springer (2014)Google Scholar
  11. 11.
    Yamane, K., Nakamura, Y.: O(n) forward dynamics computation of open kinematic chains based on the principle of virtual work. IEEE Int. Conf. Robot. Autom. ICRA 3, 2824–2831 (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • J. L. Ramírez
    • 1
  • A. Rubiano
    • 1
    • 3
  • N. Jouandeau
    • 2
  • L. Gallimard
    • 1
  • O. Polit
    • 1
  1. 1.LEME Université Paris Ouest Nanterre La DéfenseParisFrance
  2. 2.LIASD Université Paris 8ParisFrance
  3. 3.Universidad Militar Nueva GranadaBogotáColombia

Personalised recommendations