Modeling and Dynamic Identification of Medical Devices: Theory, Issues and Example

  • A. JubienEmail author
  • M. Gautier
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 39)


This paper deals with the dynamic identification of medical devices. The majority of medical devices are like serial robots. On robotic, the usual identification method is based on the Inverse Dynamic Identification Model and the Least Squares estimation (IDIM-LS method). This method was validated on industrial robots and several prototypes. However, the safety constraints applied on medical devices add some issues. Both typical examples are the use irreversible gearbox and the use of brakes during constant position level unlike conventional robot. This paper presents the theory of identification and how to apply it on medical devices. A simple example of modeling and experimental identification of medical device is presented.


Dynamic Identification Parameters Medical Medicine Robot 


  1. 1.
    Hollerbach, J., Khalil, W., Gautier, M.: Model identification. In: Springer Handbook of Robotics. Springer (2008)Google Scholar
  2. 2.
    Khalil, W., Dombre, E.: Modeling, Identification and Control of Robots, 3rd edn. Taylor and Francis Group, New York (2002)zbMATHGoogle Scholar
  3. 3.
    Gautier, M., Khalil, W.: Direct calculation of minimum set of inertial parameters of serial robots. IEEE Trans. Robot. Autom. 368–373 (1990)Google Scholar
  4. 4.
    Gautier, M., Khalil, W.: Exciting trajectories for the identification of base inertial parameters of robots. In: IEEE Conference on Decision and Control, pp. 494–499 (1995)Google Scholar
  5. 5.
    Mayeda, H., Yoshida, K., Osuka, K.: Base parameters of manipulator dynamic models. IEEE Trans. Robot. Autom. 312–321 (1990)Google Scholar
  6. 6.
    Gautier, M.: Dynamic identification of robots with power model. In: IEEE International Conference on Robotics and Automation, vol. 3, pp. 1922–1927 (1997)Google Scholar
  7. 7.
    Pham, M.T., Gautier, M., Poignet, P.: Identification of joint stiffness with bandpass filtering.In: IEEE International Conference on Robotics and Automation, vol. 3, pp. 2867–2872 (2001)Google Scholar
  8. 8.
    Jubien, A., Gautier, M.: Global identification of spring balancer, dynamic parameters and drive gains of heavy industrial robots. In: IEEE/RSH International Conference on Intelligent Robots and Systems (IROS), pp. 1355–1360 (2013)Google Scholar
  9. 9.
    Jubien, A., Gautier, M., Janot, A.: Dynamic identification of the Kuka LWR robot using motor torques and joint torque sensors data. In: World Congress of the International Federation of Automatic Control (IFAC), pp. 8391–8396 (2014)Google Scholar
  10. 10.
    Abba, G., Chaillet, N.: Robot dynamic modelling using a power flow approach with application to biped locomotion. Auton. Robots 6, 39–52 (1999)CrossRefGoogle Scholar
  11. 11.
    Al Assad, O.: Etude d’une méthodologie de modélisation et de commande d’un robot multiaxe pour une application en radiologie médicale. Université de Paris-Sud 11 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.IRCCyN (Institut de Recherche en Communication et Cybernétique de Nantes)University of NantesNantesFrance

Personalised recommendations