A Dual-User Teleoperation System with Adaptive Authority Adjustment for Haptic Training

  • Fei LiuEmail author
  • Arnaud Lelevé
  • Damien Eberard
  • Tanneguy Redarce
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 39)


This paper presents a shared control based dual-user teleoperation haptic training system. The main contribution is an Adaptive Authority Adjustment (AAA). The authority is determined on-line according to the trainee’s behavior performance. An evaluation method is introduced based on an adaptive virtual boundary, which results into a time-varing dominance factor. An overruling function is set upstream to solve some specific cases. The system is modeled and controled in port-Hamiltonian form for passivity preserving. Experiments are conducted for validation.


Dual-user teleoperation Port-Hamiltonian Adaptive Authority Adjustment (AAA) Shared control 



The authors acknowledge the financial support of the China Scholarship Council (CSC) Scholarship.


  1. 1.
    Fairhurst, K., Strickland, A., Maddern, G.J.: Simulation speak. J. Surg. Educ. 68(5), 382–386 (2011)CrossRefGoogle Scholar
  2. 2.
    Ghorbanian, A., Rezaei, S., Khoogar, A., Zareinejad, M., Baghestan, K.: A novel control framework for nonlinear time-delayed dual-master/single-slave teleoperation. ISA Trans. 52(2), 268–277 (2013)CrossRefGoogle Scholar
  3. 3.
    Khademian, B., Hashtrudi-Zaad, K.: Shared control architectures for haptic training: performance and coupled stability analysis. Int. J. Robot. Res. 30(13), 1627–1642 (2011)CrossRefGoogle Scholar
  4. 4.
    Mahapatra, S., Zefran, M.: Stable haptic interaction with switched virtual environments. In: Proceedings of IEEE International Conference on Robotics and Automation (ICRA), pp. 1241–1246 (2003)Google Scholar
  5. 5.
    Maschke, B., van der Schaft, A.: Port controlled hamiltonian systems: modeling origins and system theoretic properties. In: Proceedings of the Third Conference on Nonlinear Control Systems (NOLCOS) (1992)Google Scholar
  6. 6.
    Nicosia, S., Tomei, P.: Robot control by using only joint position measurements. IEEE Trans. Autom. Control 35(9), 1058–1061 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Nudehi, S., Mukherjee, R., Ghodoussi, M.: A shared-control approach to haptic interface design for minimally invasive telesurgical training. IEEE Trans. Control Syst. Technol. 13(4), 588–592 (2005)CrossRefGoogle Scholar
  8. 8.
    Panait, L., Akkary, E., Bell, R., Roberts, K., Dudrick, S., Duffy, A.: The role of haptic feedback in laparoscopic simulation training. J. Surg. Res. 156(2), 312–316 (2009)CrossRefGoogle Scholar
  9. 9.
    Razi, K., Hashtrudi-Zaad, K.: Analysis of coupled stability in multilateral dual-user teleoperation systems. IEEE Trans. Robot. 30(3), 631–641 (2014)CrossRefGoogle Scholar
  10. 10.
    Sansanayuth, T., Nilkhamhang, I., Tungpimolrat, K.: Teleoperation with inverse dynamics control for phantom omni haptic device. In: 2012 Proceedings of SICE Annual Conference (SICE), pp. 2121–2126 (2012)Google Scholar
  11. 11.
    Schaft, A.J.V.d.: L2-Gain and Passivity Techniques in Nonlinear Control. Springer (1996)Google Scholar
  12. 12.
    Secchi, C., Stramigioli, S., Fantuzzi, C.: Control of Interactive Robotic Interfaces: A Port-Hamiltonian Approach. Springer (2007)Google Scholar
  13. 13.
    Shahbazi, M., Atashzar, S., Patel, R.: A dual-user teleoperated system with virtual fixtures for robotic surgical training. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 3639–3644 (2013)Google Scholar
  14. 14.
    Shahbazi, M., Talebi, H., Patel, R.: Networked dual-user teleoperation with time-varying authority adjustment: a wave variable approach. In: 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 415–420 (2014)Google Scholar
  15. 15.
    Stramigioli, S.: Modeling and IPC Control of Interactive Mechanical Systems: A Coordinate-Free Approach. Springer (2001)Google Scholar
  16. 16.
    Stramigioli, S., van der Schaft, A., Maschke, B., Melchiorri, C.: Geometric scattering in robotic telemanipulation. IEEE Trans. Robot. Autom. 18(4), 588–596 (2002)CrossRefGoogle Scholar
  17. 17.
    Tavakoli, M., Patel, R., Moallem, M.: Haptics For Teleoperated Surgical Robotic Systems. World Scientific (2008)Google Scholar
  18. 18.
    Taylor, R., Stoianovici, D.: Medical robotics in computer-integrated surgery. IEEE Trans. Robot. Autom. 19(5), 765–781 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Fei Liu
    • 1
    Email author
  • Arnaud Lelevé
    • 1
  • Damien Eberard
    • 1
  • Tanneguy Redarce
    • 1
  1. 1.Université de Lyon, INSA de Lyon, Laboratoire Ampère (UMR 5005)LYONFrance

Personalised recommendations