Advertisement

On the Design of the Exoskeleton Arm with Decoupled Dynamics

  • V. Arakelian
  • Y. Aoustin
  • C. Chevallereau
Conference paper
Part of the Mechanisms and Machine Science book series (Mechan. Machine Science, volume 39)

Abstract

This paper focuses on the design of a 2-DOF exoskeleton arm with decoupled dynamics. The goal is to simplify the controller design by reducing the effects of complicated manipulator dynamics. The added epicyclic gear train allows the optimal redistribution of kinetic energy, which leads to the linearization and decoupling of the dynamic equations. The determination of the parameters of the added links is based on eliminating coefficients of nonlinear terms in the manipulator’s kinetic and potential energy equations. The suggested design methodology is illustrated by simulations carried out using the software ADAMS.

Keywords

Exoskeleton arm Multibody system Dynamic equations Decoupling Balancing Epicyclic gear train 

Notes

Acknowledgments

This work is supported by the Pays de la Loire Region, the Project LMA and “Gérontopôle Autonomie Longévité” of the Pays de la Loire Region.

References

  1. 1.
    Brady, M., Hollerbach, J. Xl., et al.: Robot Motion: Planning and Control. MIT Press, Cambridge (1983)Google Scholar
  2. 2.
    Artobolevskii I.I., Ovakimov A.G.: One property of a matrix describing the structure of a manipulator drive, Transactions of the USSR Academia of Sciences, vol. 230, (in Russian, see English version in http://adsabs.harvard.edu/abs/1976DoSSR.230..298A) (1976)
  3. 3.
    Belyanin P.N., et al.: Mechanical arm. U.S. Patent 4259876, 7 Apr 1981Google Scholar
  4. 4.
    Youcef-Toumi K.: Analysis, Design and Control of Direct-Drive Manipulators. Ph.D thesis, Massachusetts Institute of Technology, Department of Mechanical Engineering (1985)Google Scholar
  5. 5.
    Youcef-Toumi K., Asada, H.: The design of arm linkages with decoupled and configuration-invariant inertia tensors: Part II: Actuator relocation and mass redistribution. In: Proceedings of 1985 ASME, Winter Annual Meeting, Miami, pp. 153–161 (1985)Google Scholar
  6. 6.
    Korendyasev A.L., et al.: Manipulation Systems of Robots. Moscow, Mashinostroyenia, 782p. (1989)Google Scholar
  7. 7.
    Minotti, P.: Découplage dynamique des manipulateurs: propositions de solutions mécaniques. Mech. Mach. Theor. 26(1), 107–122 (1991)CrossRefGoogle Scholar
  8. 8.
    Youcef-Toumi, K.: Analysis and design of manipulators with decoupled and configuration-invariant inertia tensors using remote actuation. Trans. ASME J. Dyn. Syst. Meas. Contr. 114(June), 204–212 (1992)CrossRefzbMATHGoogle Scholar
  9. 9.
    Chug, Y.-H., Gang, J.-G., Lee, J.-W.: The effect of actuator relocation on singularity, Jacobian and kinematic isotroy of parallel robots. In: Proceedings of the 2002 IEEWRSJ International Conference on Intelligent Robots and Systems EPFL, Lausanne, Switzerland, October 2002, pp. 2147–2153 (2002)Google Scholar
  10. 10.
    Vukobratovic, K.M., Stokic, D.M.: Contribution to the decoupled control of large-scale mechanisms. Automatica, pp. 9–21 (1980)Google Scholar
  11. 11.
    Glazunov, V.: Design of decoupled parallel manipulators by means of the theory of screws. Mech. Mach. Theor. 45(2), 239–250 (2010)CrossRefzbMATHGoogle Scholar
  12. 12.
    Briot, S., Arakelian, V., Guegan, S.: PAMINSA : a new family of partially decoupled parallel manipulators. Mech. Mach. Theor. 44(2), 425–444 (2009)CrossRefzbMATHGoogle Scholar
  13. 13.
    Carricato, M., Parenti-Castelli, V.: On the topological and geometrical synthesis and classification of translational parallel mechanisms. In: Proceedings of the 11th World Congress in Mechanism and Machine Science, Tianjin, China, 2004, pp. 1624–1628 (2004)Google Scholar
  14. 14.
    Kong, X., Gosselin, C.M.: A class of 3-DOF translational parallel manipulator with linear input–output equations. In: Workshop on Fundamental Issues and Future Research for Parallel Mechanisms and Manipulators, Quebec City, Quebec, Canada, 2002, pp. 25–32 (2002)Google Scholar
  15. 15.
    Gosselin C.M., Kong X., Foucault, S., Bonev, I.A.: A fully decoupled 3-DOF translational parallel mechanism. In: PKM International Conference, Chemnitz, Germany, 2004, pp. 595–610 (2004)Google Scholar
  16. 16.
    Asada, H., Youcef-Toumi K.: Decoupling of manipulator inertia tensor by mass redistribution. In: Proceedings of the Design Engineering Technical Conference, Cambridge, October, ASME Paper 84-DET-40 (1984)Google Scholar
  17. 17.
    Youcef-Toumi, K., Asada H.: The design of open-loop manipulator arms with decoupled and configuration-invariant inertia tensors. In: Proceedings of the IEEE Conf. on Robotis and Automation (ICRA’84), San Francisco, pp. 2018–2026 (1986)Google Scholar
  18. 18.
    Youcef-Toumi, K., Asada H.: The design of arm linkages with decoupled and configuration-invariant inertia tensors: Part I: open kinematic chains with special drive mechanisms. In: Proceedings of 1985 ASME, Winter Annual Meeting, Miami, pp. 145–152 (1985)Google Scholar
  19. 19.
    Yang, D.C.H., Tzeng S.W.: Simplification and linearization of manipulator dynamics by design. In: Proceedings of the 9th Applied Mechanics Conference, Kansas City, Missouri, 28–30 Oct 1985Google Scholar
  20. 20.
    Yang, D.C.H., Tzeng, S.W.: Simplification and linearization of manipulator dynamics by the design of inertia distribution. Int. J. Robot. Res. 5(3), 120–128 (1986)CrossRefGoogle Scholar
  21. 21.
    Youcef-Toumi, K., Asada, H.: The design of open-loop manipulator arms with decoupled and configuration-invariant inertia tensors. Trans. ASME J. Dyn. Syst. Meas. Contr. 109, 268–275 (1987)CrossRefzbMATHGoogle Scholar
  22. 22.
    Abdel-Rahman, T.M., Elbestawi, M.A.: Synthesis and dynamics of statically balanced direct-drive manipulators with decoupled inertia tensors. Mech. Mach. Theor. 26(4), 389–402 (1991)CrossRefGoogle Scholar
  23. 23.
    Park, H.S., Cho, H.S.: General design conditions for an ideal robotic manipulator having simple dynamics. Int. J. Robot. Res. 10(1), 21–29 (1991)CrossRefGoogle Scholar
  24. 24.
    Minotti, P., Pracht, P.: Design of robots driven by linear servo systems. Robotica 10, 361–368 (1992)CrossRefGoogle Scholar
  25. 25.
    Filaretov, V.F., Vukobratovic, M.K.: Static balancing and dynamic decoupling of the motion of manipulation robots. Mechatronics 3(6), 767–782 (1993)CrossRefGoogle Scholar
  26. 26.
    Arakelian, V., Dahan, M.: Equilibrage optimal des mécanismes pour manipulateurs. In: Acts du 12e Congrès Français de Mécanique, Strasbourg, 4–8 Septembre, vol. 4, pp. 373–376 (1995)Google Scholar
  27. 27.
    Zhang, Y., Gruver, W.A., Gao, F.: Dynamic simplification of three degree of freedom manipulators with closed chains. Robot. Auton. Syst. 28(4), 261–269 (1999)CrossRefGoogle Scholar
  28. 28.
    Coelho, T.A.H., Yong, L., Alves, V.F.A.: Decoupling of dynamic equations by means of adaptive balancing of 2-dof open-loop mechanisms. Mech. Mach. Theor. 39(8), 871–881 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Moradi, M., Nikoobin, A., Azadi, S.: Adaptive decoupling for open chain planar robots. Sci. Iranica: Trans B, Mech. Eng. 17(5), 376–386 (2010)zbMATHGoogle Scholar
  30. 30.
    Arakelian, V., Sargsyan, S.: On the design of serial manipulators with decoupled dynamics. Mechatronics 22(6), 904–909 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.IRCCyNNantes Cedex 03France
  2. 2.Department of Mechanical and Control Systems EngineeringI.N.S.A. RennesRennesFrance

Personalised recommendations