SHAMUS: UFAL Search and Hyperlinking Multimedia System

Part of the Lecture Notes in Computer Science book series (LNCS, volume 9626)

Abstract

In this paper, we describe SHAMUS, our system for an easy search and navigation in multimedia archives. The system consists of three components. The Search component provides a text-based search in a multimedia collection, the Anchoring component determines the most important segments of videos, and segments topically related to the anchoring ones are retrieved by the Hyperlinking component. In the paper, we describe each component of the system as well as the online demo interface http://ufal.mff.cuni.cz/shamus which currently works with a collection of TED talks.

References

  1. 1.
    Davidson, J., Liebald, B., Liu, J., Nandy, P., Van Vleet, T., Gargi, U., Gupta, S., He, Y., Lambert, M., Livingston, B., Sampath, D.: The YouTube video recommendation system. In: Proceedings of RecSys, pp. 293–296, Barcelona, Spain (2010)Google Scholar
  2. 2.
    Galuščáková, P., Kruliš, M., Lokoč, J., Pecina, P.: CUNI at MediaEval 2014 search and hyperlinking task: visual and prosodic features in hyperlinking. In: Proceedings of MediaEval, Barcelona, Spain (2014)Google Scholar
  3. 3.
    Galuščáková, P., Pecina, P.: CUNI at MediaEval 2014 search and hyperlinking task: search task experiments. In: Proceedings of MediaEval, Barcelona, Spain (2014)Google Scholar
  4. 4.
    Galuščáková, P., Pecina, P.: CUNI at MediaEval 2015 search and anchoring in video archives: anchoring via information retrieval. In: Proceedings of MediaEval, Wurzen, Germany (2015)Google Scholar
  5. 5.
    Moyal, A., Aharonson, V., Tetariy, E., Gishri, M.: Phonetic Search Methods for Large Speech Databases. Springer, New York (2013)CrossRefGoogle Scholar
  6. 6.
    Ounis, I., Amati, G., Plachouras, V., He, B., Macdonald, C., Lioma, C.: Terrier: a high performance and scalable information retrieval platform. In: Proceedings of ACM SIGIR 2006 Workshop on Open Source Information Retrieval, pp. 18–25, Seattle, Washington, USA (2006)Google Scholar
  7. 7.
    Pappas, N., Popescu-Belis, A.: Combining content with user preferences for TED lecture recommendation. In: Proceedings of CBMI, pp. 47–52. IEEE, Veszprém, Hungary (2013)Google Scholar
  8. 8.
    Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Schoeffmann, K.: A user-centric media retrieval competition: the video browser showdown 2012–2014. IEEE Multimedia 21(4), 8–13 (2014)CrossRefGoogle Scholar
  10. 10.
    Schoeffmann, K., Hopfgartner, F., Marques, O., Boeszoermenyi, L., Jose, J.M.: Video browsing interfaces and applications: a review. Spie rev. 1(1), 018004 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Petra Galuščáková
    • 1
  • Shadi Saleh
    • 1
  • Pavel Pecina
    • 1
  1. 1.Faculty of Mathematics and Physics, Institute of Formal and Applied LinguisticsCharles University in PraguePragueCzech Republic

Personalised recommendations