Improving Document Ranking for Long Queries with Nested Query Segmentation

  • Rishiraj Saha Roy
  • Anusha Suresh
  • Niloy Ganguly
  • Monojit Choudhury
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9626)


In this research, we explore nested or hierarchical query segmentation (An extended version of this paper is available at, where segments are defined recursively as consisting of contiguous sequences of segments or query words, as a more effective representation of a query. We design a lightweight and unsupervised nested segmentation scheme, and propose how to use the tree arising out of the nested representation of a query to improve ranking performance. We show that nested segmentation can lead to significant gains over state-of-the-art flat segmentation strategies.



The first author was supported by Microsoft Corporation and Microsoft Research India under the Microsoft Research India PhD Fellowship Award.


  1. 1.
    Li, Y., Hsu, B.J.P., Zhai, C., Wang, K.: Unsupervised query segmentation using clickthrough for information retrieval. In: SIGIR 2011, pp. 285–294 (2011)Google Scholar
  2. 2.
    Saha Roy, R., Ganguly, N., Choudhury, M., Laxman, S.: An IR-based evaluation framework for web search query segmentation. In: SIGIR 2012, pp. 881–890 (2012)Google Scholar
  3. 3.
    Tan, B., Peng, F.: Unsupervised query segmentation using generative language models and Wikipedia. In: WWW 2008, pp. 347–356 (2008)Google Scholar
  4. 4.
    Mishra, N., Saha Roy, R., Ganguly, N., Laxman, S., Choudhury, M.: Unsupervised query segmentation using only query logs. In: WWW 2011, pp. 91–92 (2011)Google Scholar
  5. 5.
    Hagen, M., Potthast, M., Stein, B., Bräutigam, C.: Query segmentation revisited. In: WWW 2011, pp. 97–106 (2011)Google Scholar
  6. 6.
    Cummins, R., O’Riordan, C.: Learning in a pairwise term-term proximity framework for information retrieval. In: SIGIR 2009, pp. 251–258 (2009)Google Scholar
  7. 7.
    Chaudhari, D.L., Damani, O.P., Laxman, S.: Lexical co-occurrence, statistical significance, and word association. In: EMNLP 2011, pp. 1058–1068 (2011)Google Scholar
  8. 8.
    Agichtein, E., Brill, E., Dumais, S.: Improving web search ranking by incorporating user behavior information. In: SIGIR 2006, pp. 19–26 (2006)Google Scholar
  9. 9.
    Huang, J., Gao, J., Miao, J., Li, X., Wang, K., Behr, F., Giles, C.L.: Exploring web scale language models for search query processing. In: WWW 2010, pp. 451–460 (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Rishiraj Saha Roy
    • 1
  • Anusha Suresh
    • 2
  • Niloy Ganguly
    • 2
  • Monojit Choudhury
    • 3
  1. 1.Max Planck Institute for InformaticsSaarbrückenGermany
  2. 2.Indian Institute of Technology (IIT)KharagpurIndia
  3. 3.Microsoft Research IndiaBangaloreIndia

Personalised recommendations