Probabilistic Local Expert Retrieval

  • Wen Li
  • Carsten Eickhoff
  • Arjen P. de Vries
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9626)


This paper proposes a range of probabilistic models of local expertise based on geo-tagged social network streams. We assume that frequent visits result in greater familiarity with the location in question. To capture this notion, we rely on spatio-temporal information from users’ online check-in profiles. We evaluate the proposed models on a large-scale sample of geo-tagged and manually annotated Twitter streams. Our experiments show that the proposed methods outperform both intuitive baselines as well as established models such as the iterative inference scheme.


Domain expertise Geo-tagging Twitter 


  1. 1.
    Balog, K., Fang, Y., de Rijke, M., Serdyukov, P., Si, L.: Expertise retrieval. Found. Trends Inf. Retrieval 6(2–3), 127–256 (2012)CrossRefGoogle Scholar
  2. 2.
    Bao, J., Zheng, Y., Mokbel, M.F.: Location-based and preference-aware recommendation using sparse geo-social networking data. In: Proceedings of the 20th International Conference on Advances in Geographic Information Systems - SIGSPATIAL 2012, pp. 199–208 (2012)Google Scholar
  3. 3.
    Bar-Haim, R., Dinur, E., Feldman, R., Fresko, M., Goldstein, G.: Identifying and following expert investors in stock microblogs. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing - EMNLP 2011, pp. 1310–1319 (2011)Google Scholar
  4. 4.
    Campbell, C.S., Maglio, P.P., Cozzi, A., Dom, B.: Expertise identification using email communications. In: Proceedings of the 12th International Conference on Information and Knowledge Management - CIKM 2003, pp. 528–531 (2003)Google Scholar
  5. 5.
    Cheng, Z., Caverlee, J., Barthwal, H., Bachani, V.: Who is the barbecue king of Texas? In: Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval - SIGIR 2014, pp. 335–344 (2014)Google Scholar
  6. 6.
    Fang, H., Zhai, C.X.: Probabilistic models for expert finding. In: Amati, G., Carpineto, C., Romano, G. (eds.) ECiR 2007. LNCS, vol. 4425, pp. 418–430. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Fang, Y., Si, L., Mathur, A.P.: Discriminative models of integrating document evidence and document-candidate associations for expert search. In: Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval - SIGIR 2010, p. 683 (2010)Google Scholar
  8. 8.
    Fleiss, J.L.: Measuring nominal scale agreement among many raters. Psychol. Bull. 76(5), 378–382 (1971)CrossRefGoogle Scholar
  9. 9.
    Horowitz, D., Kamvar, S.D.: The anatomy of a large-scale social search engine. In: Proceedings of the 19th International Conference on World Wide Web - WWW 2010, pp. 431–440 (2010)Google Scholar
  10. 10.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Li, W., Eickhoff, C., de Vries, A.P.: Geo-spatial domain expertise in microblogs. In: de Rijke, M., Kenter, T., de Vries, A.P., Zhai, C.X., de Jong, F., Radinsky, K., Hofmann, K. (eds.) ECIR 2014. LNCS, vol. 8416, pp. 487–492. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  12. 12.
    Li, W., Serdyukov, P., de Vries, A.P., Eickhoff, C., Larson, M.: The where in the tweet. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management - CIKM 2011, pp. 2473–2476 (2011)Google Scholar
  13. 13.
    Liu, X., Croft, W.B., Koll, M.: Finding experts in community-based question-answering services. In: Proceedings of the 14th ACM International Conference on Information and Knowledge Management - CIKM 2005, pp. 315–316 (2005)Google Scholar
  14. 14.
    Loftus, G.R.: Evaluating forgetting curves. J. Exp. Psychol. Learn. Mem. Cogn. 11(2), 397–406 (1985)CrossRefGoogle Scholar
  15. 15.
    Wagner, C., Liao, V., Pirolli, P., Nelson, L., Strohmaier, M.: It’s not in their tweets: modeling topical expertise of twitter users. In: SocialCom/PASSAT 2012, pp. 91–100 (2012)Google Scholar
  16. 16.
    Whiting, S., Zhou, K., Jose, J., Alonso, O., Leelanupab, T.: CrowdTiles: presenting crowd-based information for event-driven information needs. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management - CIKM 2012, pp. 2698–2700 (2012)Google Scholar
  17. 17.
    Yimam-Seid, D., Kobsa, A.: Expert-finding systems for organizations: problem and domain analysis and the DEMOIR approach. J. Organ. Comput. Electron. Commer. 13(1), 1–24 (2003)Google Scholar
  18. 18.
    Zhang, J., Ackerman, M.S., Adamic, L.: Expertise networks in online communities: structure and algorithms. In: Proceedings of the 16th International Conference on World Wide Web - WWW 2007, pp. 221–230 (2007)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University College LondonLondonUK
  2. 2.Department of Computer ScienceETH ZurichZurichSwitzerland
  3. 3.Faculty of ScienceRadboud UniversityNijmegenThe Netherlands

Personalised recommendations