Skip to main content

Suspensions of Colloidal Aggregates

  • Chapter
  • First Online:
Suspensions of Colloidal Particles and Aggregates

Part of the book series: Particle Technology Series ((POTS,volume 20))

Abstract

Aggregation is the “natural response” of particle systems on the existence of interfacial energy. A lot of colloidal materials therefore contain or completely consist of particle aggregates. The morphology of these aggregates depends on the prevailing aggregation mechanisms; it is typically irregular and can be described as fractallike. The chapter introduces concepts to quantify size and structure of aggregates and asks for the physical properties of colloidal aggregates in suspensions. It particularly addresses the light scattering and hydrodynamic behaviour. The principal physical effects are discussed; models and tools for calculation are reviewed. It is shown how the consequent use of such knowledge can significantly enhance material characterisation. Last but not least the chapter addresses the van-der-Waals and double layer interaction between colloidal aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term cluster states that aggregation occurs between individual clusters incl. single particles, whereas in a particle aggregation mechanism only single particles adhere at a central aggregate (Schaefer and Hurd 1990).

  2. 2.

    The term fractal is derived from the latin fractus, i.e. broken.

  3. 3.

    This definition deviates from the one some authors use for compact aggregates, where the fluid captured in the voids are considered as part of the aggregate. However, in the case of fractal aggregates it is difficult to define a meaningful aggregate surface, which is necessary for calculating a total volume or mass.

  4. 4.

    Note that the primary particles can change their shape and size after aggregation, e.g. due to sintering. In this case, the term constituent particles would be more appropriate.

  5. 5.

    The slight data scatter results from the low number of orientations (15) used for averaging in GMM calculations.

  6. 6.

    The equations in that paper contain misprints. A corrected version is given by Schaefer and Hurd (1990).

  7. 7.

    A more detailed analysis in Babick et al. (2012b) revealed that the polydispersity of the computed distribution q int contradicts the “physical” polydispersity obtained by the method of cumulants in the case of the 90° DLS instrument, while they agree well for the backscattering DLS instrument.

  8. 8.

    Since the detection is based on optical signals, the methods can be blind to very small aggregates. The minimum aggregate size can never be reliably detected via scattering or extinction.

References

Aggregation

Structure of (Fractal) Aggregates

Scattering of Aggregates

  • F. Babick, K. Schießl, M. Stintz, Characterization of pyrogenic powders with conventional particle sizing technique: I. Prediction of measured size distributions. Part. Part. Syst. Charact. 29(2), 104–115 (2012a). doi:10.1002/ppsc.201000024

    Article  Google Scholar 

  • F. Babick, S. Gropp, M. Stintz, Dynamic light scattering of dispersed pyrogenic powders. On the CD-ROM: PARTEC 2013, International Congress for Particle Technology, Nuremberg, 23–25 April 2013. ISBN 978-3-00-040578-5 (available from NürnbergMesse GmbH, Messezentrum, 90471 Nürnberg, Germany), p 368

    Google Scholar 

  • M.V. Berry, I.C. Percival, Optics of fractal clusters such as smoke. Opt. Acta 33(5), 577–591 (1986). doi:10.1080/713821987

    Article  Google Scholar 

  • O. Cruzan, Translational addition theorems for spherical vector wave functions. Q. Appl. Math. 20(1), 33–40 (1962)

    MathSciNet  MATH  Google Scholar 

  • P. Debye, Zerstreuung von Röntgenstrahlen. Ann. Phys., IV 46(6), 809–823 (1915). doi:10.1002/andp.19153510606

    Google Scholar 

  • B.L. Henke, E.M. Gullikson, J.C. Davis, X-Ray Interactions: Photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92. At. Data Nucl. Data Tables 54(2), 181–342 (1993). doi:10.1006/adnd.1993.1013

    Article  Google Scholar 

  • S. Jacquier, F. Gruy, Application of scattering theories to the characterization of precipitation processes, in Light Scattering Reviews 5. Single Light Scattering and Radiative Transfer, ed. by A.A. Kokhanovsky, part 1 (Springer Praxis Books, Berlin Heidelberg, 2010), pp. 37–78. ISBN 978-3-642-10335-3. doi:10.1007/978-3-642-10336-0_2

    Google Scholar 

  • H.K. Kammler, G. Beaucage, R. Mueller, S.E. Pratsinis, Structure of flame-made silica nanoparticles by ultra-small-angle X-ray scattering. Langmuir 20(5), 1915–1921 (2004). doi:10.1021/la030155v

    Article  Google Scholar 

  • U. Kätzel, F. Gruy, F. Babick, W. Klöden, Light extinction at agglomerates of spheres—A practical test on the submicroscale. J. Colloid Interface Sci. 289(1), 116–124 (2005). doi:10.1016/j.jcis.2005.03.041

    Article  Google Scholar 

  • U. Kätzel, M. Vorbau, M. Stintz, T. Gottschalk-Gaudig, H. Barthel, Dynamic light scattering for the characterization of polydisperse fractal systems: II. Relation between structure and DLS results. Part. Part. Syst. Charact. 25(1), 19–30 (2008b). doi:10.1002/ppsc.200700005

    Article  Google Scholar 

  • N.G. Khlebtsov, Spectroturbidimetry of fractal clusters: test of density correlation function cutoff. Appl. Opt. 35(21), 4261–4270 (1996). doi:10.1364/AO.35.004261

    Article  Google Scholar 

  • D.W. Mackowski, Analysis of radiative scattering for multiple sphere configurations. Proc. R. Soc., London, A 433, 599–614 (1991). doi:10.1098/rspa.1991.0066

    Google Scholar 

  • G. Mie, Beiträge zur Optik trüber Medien, speziell kolloidaler Goldlösungen. Ann. Phys., IV 25(3), 377–445 (1908). doi:10.1002/andp.19083300302

    Google Scholar 

  • E.M. Purcell, C.R. Pennypacker, Scattering and absorption of light by nonspherical dielectric grains. Astrophys. J. 186(2), 705–714 (1973). doi:10.1086/152538

    Article  Google Scholar 

  • S.B. Singham, C.F. Bohren, Scattering of unpolarized and polarized light by particle aggregates of different size and fractal dimension. Langmuir 9(5), 1431–1435 (1993). doi:10.1021/la00029a044

    Article  Google Scholar 

  • C.M. Sorensen, Light scattering by fractal aggregates: a review. Aerosol Sci. Technol. 35(2), 648–687 (2001). doi:10.1080/02786820117868

    Article  Google Scholar 

  • S. Stein, Addition theorems for spherical wave functions. Q. Appl. Math. 19(1), 15–24 (1961)

    MathSciNet  MATH  Google Scholar 

  • R.T. Wang, B.Å.S. Gustafson, Angular scattering and polarization by randomly oriented dumbbells and chains of spheres, in Proceedings of the 1983 Scientific Conference on Obscuration and Aerosol Research, eds. by J. Farmer, R. Kohl (U.S. Army Aberdeen, Md., 1984), pp. 237–247

    Google Scholar 

  • W. Wiscombe, Improved Mie scattering algorithms. Appl. Opt. 19(9), 1505–1509 (1980). doi:10.1364/AO.19.001505

    Article  Google Scholar 

  • Y.-L. Xu, Electromagnetic scattering by an aggregate of spheres. Appl. Opt. 34(21), 4573–4588 (1995). doi:10.1364/AO.34.004573

    Article  Google Scholar 

  • Y.-L. Xu, Electromagnetic scattering by an aggregate of spheres: Far field. Appl. Opt. 36(36), 9496–9508 (1997). doi:10.1364/AO.36.009496

    Article  Google Scholar 

  • Y.-L. Xu, Efficient evaluation of vector translation coefficients in multiparticle light-scattering theories. J. Comp. Phys. 139(1), 137–165 (1998a). doi:10.1006/jcph.1997.5867

    Article  MathSciNet  MATH  Google Scholar 

  • Y.-L. Xu, Electromagnetic scattering by an aggregate of spheres: asymmetry parameter. Phys. Lett. A 249(1–2), 30–36 (1998b). doi:10.1016/S0375-9601(98)00708-7

    Article  Google Scholar 

  • Y.-L. Xu, B.Å.S. Gustafson, Experimental and theoretical results of light scattering by aggregates of spheres. Appl. Opt. 36(30), 8026–8030 (1997). doi:10.1364/AO.36.008026

    Google Scholar 

Hydrodynamics of Aggregates

Pyrogenic Powders

  • S.R. Aragón, R. Pecora, Theory of dynamic light scattering from large anisotropic particles. J. Chem. Phys. 66(6), 2506–2516 (1977). doi:10.1063/1.434246

    Article  Google Scholar 

  • F. Babick, K. Schießl, M. Stintz, Characterization of pyrogenic powders with conventional particle sizing technique: I. Prediction of measured size distributions. Part. Part. Syst. Charact. 29(2), 104–115 (2012a). doi:10.1002/ppsc.201000024

    Article  Google Scholar 

  • F. Babick, M. Vorbau, M. Stintz, Characterization of pyrogenic powders with conventional particle sizing technique: II. Experimental data. Part. Part. Syst. Charact. 29(2), 116–127 (2012b). doi:10.1002/ppsc.201000025

    Article  Google Scholar 

  • F. Babick, S. Gropp, U. Kätzel, M. Vorbau, Dynamic light scattering of dispersed fumed silica aggregates. Powder Technol. 215–216, 39–45 (2012c). doi:10.1016/j.powtec.2011.10.064

    Article  Google Scholar 

  • H. Barthel, M. Dreyer, T. Gottschalk-Gaudig, V. Litvinov, E. Nikitina, Fumed silica—Rheological additive for adhesives, resins, and paints. Macromol. Symp. 187(1), 573–584 (2002). doi:10.1002/1521-3900(200209)187:1<573:AID-MASY573>3.0.CO;2-1

    Article  Google Scholar 

  • G. Beaucage, Approximations leading to a unified exponential/power-law approach to small-angle scattering. J. Appl. Cryst. 28(6), 717–728 (1995). doi:10.1107/S0021889895005292

    Article  Google Scholar 

  • G. Beaucage, Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension. J. Appl. Cryst. 29(2), 134–146 (1996). doi:10.1107/S0021889895011605

    Article  Google Scholar 

  • D. Boldridge, Morphological characterization of fumed silica aggregates. Aerosol Sci. Technol. 44(3), 188–192 (2010). doi:10.1080/02786820903499462

    Article  Google Scholar 

  • U. Brinkmann, M. Ettlinger, D. Kerner, R. Schmoll, Synthetic amorphous silicas, in Colloidal silica: Fundamentals and Applications, eds. by H.E. Bergna, W.O. Roberts, Chap. 43. Surfactant Science Series, vol. 131 (Taylor & Francis, Boca Raton, 2006), pp. 575–588. ISBN 0-8247-0967-5

    Google Scholar 

  • E. Bugnicourt, J. Galy, J.-F. Gérarda, F. Bouéb, H. Barthel, Structural investigations of pyrogenic silica–epoxy composites: combining small-angle neutron scattering and transmission electron microscopy. Polymer 48(4), 949–958 (2007). doi:10.1016/j.polymer.2006.12.012

    Article  Google Scholar 

  • M. Ettlinger, Pyrogenic silica, in Ullmann’s Encyclopedia of Industrial Chemistry, 7th edn (Wiley-VCH, 2002)

    Google Scholar 

  • A.J. Hurd, D.W. Schaefer, J.E. Martin, Surface and mass fractals in vapor-phase aggregates. Phys. Rev. A 35(5), 2361–2364 (1987). doi:10.1103/PhysRevA.35.2361

    Article  Google Scholar 

  • IARC, Working group on the evaluation of carcinogenic risks to humans, Carbon black, titanium dioxide, and talc, in: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, vol. 93 (International Agency for Research on Cancer (IARC), Lyon, 2010), pp. 56–63

    Google Scholar 

  • N. Ibaseta, B. Biscans, Fractal dimension of fumed silica: comparison of light scattering and electron microscope methods. Powder Technol. 203(2), 206–210 (2010). doi:10.1016/j.powtec.2010.05.010

    Article  Google Scholar 

  • H.K. Kammler, G. Beaucage, R. Mueller, S.E. Pratsinis, Structure of flame-made silica nanoparticles by ultra-small-angle X-ray scattering. Langmuir 20(5), 1915–1921 (2004). doi:10.1021/la030155v

    Article  Google Scholar 

  • H.K. Kammler, G. Beaucage, D.J. Kohls, N. Agashe, J. Ilavsky, Monitoring simultaneously the growth of nanoparticles and aggregates by in situ ultra-small-angle x-ray scattering. J. Appl. Phys. 97(5), 054309 (2005). doi:10.1063/1.1855391

    Article  Google Scholar 

  • U. Kätzel, M. Vorbau, M. Stintz, T. Gottschalk-Gaudig, H. Barthel, Dynamic light scattering for the characterization of polydisperse fractal systems: II. Relation between structure and DLS results. Part. Part. Syst. Charact. 25(1), 19–30 (2008b). doi:10.1002/ppsc.200700005

    Article  Google Scholar 

  • M. Lattuada, H. Wu, P. Sandkühler, J. Sefcik, M. Morbidelli, Modelling of aggregation kinetics of colloidal systems and its validation by light scattering measurements. Chem. Eng. Sci. 59(8–9), 1783–1798 (2004). doi:10.1016/j.ces.2004.01.033

    Article  Google Scholar 

  • M.Y. Lin, H.M. Lindsay, D.A. Weitz, R.C. Ball, R. Klein, P. Meakin, Universality of fractal aggregates as probed by light scattering. Proc. R. Soc. London, A 423(1864), 71–87 (1989). doi:10.1098/rspa.1989.0042

    Google Scholar 

  • M.Y. Lin, H.M. Lindsay, D.A. Weitz, R. Klein, R.C. Ball, P. Meakin, Universal diffusion-limited colloid aggregation. J. Phys. Condens. Matter 2(13), 3093–3113 (1990a). doi:10.1088/0953-8984/2/13/019

    Article  Google Scholar 

  • H.M. Lindsay, R. Klein, D.A. Weitz, M.Y. Lin, P. Meakin, Effect of rotational diffusion on quasielastic light scattering from fractal colloid aggregates. Phys. Rev. A 38(5), 2614–2626 (1988). doi:10.1103/PhysRevA.38.2614

    Article  Google Scholar 

  • H.M. Lindsay, R. Klein, D.A. Weitz, M.Y. Lin, P. Meakin, Structure and anisotropy of colloid aggregates. Phys. Rev. A 39(6), 3112–3119 (1989). doi:10.1103/PhysRevA.39.3112

    Article  Google Scholar 

  • P. Sandkühler, M. Lattuada, H. Wu, J. Sefcik, M. Morbidelli, Further insights into the universality of colloidal aggregation. Adv. Colloid Interface Sci. 113(2–3), 65–83 (2005b). doi:10.1016/j.cis.2004.12.001

    Article  Google Scholar 

  • D.W. Schaefer, A.J. Hurd, Growth and structure of combustion aerosols—Fumed silica. Aerosol Sci. Technol. 12(4), 876–890 (1990). doi:10.1080/02786829008959400

    Article  Google Scholar 

  • C.M. Sorensen, Light scattering by fractal aggregates: a review. Aerosol Sci. Technol. 35(2), 648–687 (2001). doi:10.1080/02786820117868

    Article  Google Scholar 

  • S. Tsantilis, S.E. Pratsinis, Soft- and hard-agglomerate aerosols made at high temperatures. Langmuir 20(14), 5933–5939 (2004). doi:10.1021/la036389w

    Article  Google Scholar 

  • L. Ying, China’s fumed silica industry urgently needs upgrading. Chin. Chem. Rep. 21(22), 27–28 (2010)

    Google Scholar 

Interaction Among Aggregates

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Babick .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Babick, F. (2016). Suspensions of Colloidal Aggregates. In: Suspensions of Colloidal Particles and Aggregates. Particle Technology Series, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-319-30663-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30663-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30661-2

  • Online ISBN: 978-3-319-30663-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics