Automation of Technology for Cancer Research

  • Wietske van der Ent
  • Wouter J. Veneman
  • Arwin Groenewoud
  • Lanpeng Chen
  • Claudia Tulotta
  • Pancras C. W. Hogendoorn
  • Herman. P. SpainkEmail author
  • B. Ewa Snaar-JagalskaEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 916)


Zebrafish embryos can be obtained for research purposes in large numbers at low cost and embryos develop externally in limited space, making them highly suitable for high-throughput cancer studies and drug screens. Non-invasive live imaging of various processes within the larvae is possible due to their transparency during development, and a multitude of available fluorescent transgenic reporter lines.

To perform high-throughput studies, handling large amounts of embryos and larvae is required. With such high number of individuals, even minute tasks may become time-consuming and arduous. In this chapter, an overview is given of the developments in the automation of various steps of large scale zebrafish cancer research for discovering important cancer pathways and drugs for the treatment of human disease. The focus lies on various tools developed for cancer cell implantation, embryo handling and sorting, microfluidic systems for imaging and drug treatment, and image acquisition and analysis. Examples will be given of employment of these technologies within the fields of toxicology research and cancer research.


Zebrafish Cancer Automation High-throughput Robotics Microfluidics Image analysis 



This work was supported by Stichting Kinderen Kankervrij, Project 30677


  1. 1.
    Beckwith LG, Moore JL, Tsao-Wu GS, Harshbarger JC, Cheng KC (2000) Ethylnitrosourea induces neoplasia in zebrafish (Danio rerio). Lab Invest 80(3):379–385CrossRefPubMedGoogle Scholar
  2. 2.
    Spitsbergen JM, Tsai HW, Reddy A, Miller T, Arbogast D, Hendricks JD, Bailey GS (2000) Neoplasia in zebrafish (Danio rerio) treated with N-methyl-N′-nitro-N-nitrosoguanidine by three exposure routes at different developmental stages. Toxicol Pathol 28(5):716–725CrossRefPubMedGoogle Scholar
  3. 3.
    Spitsbergen JM, Tsai HW, Reddy A, Miller T, Arbogast D, Hendricks JD, Bailey GS (2000) Neoplasia in zebrafish (Danio rerio) treated with 7,12-dimethylbenz[a]anthracene by two exposure routes at different developmental stages. Toxicol Pathol 28(5):705–715CrossRefPubMedGoogle Scholar
  4. 4.
    Langenau DM, Traver D, Ferrando AA, Kutok JL, Aster JC, Kanki JP, Lin S, Prochownik E, Trede NS, Zon LI, Look AT (2003) Myc-induced T cell leukemia in transgenic zebrafish. Science 299(5608):887–890. doi: 10.1126/science.1080280 CrossRefPubMedGoogle Scholar
  5. 5.
    Yang HW, Kutok JL, Lee NH, Piao HY, Fletcher CD, Kanki JP, Look AT (2004) Targeted expression of human MYCN selectively causes pancreatic neuroendocrine tumors in transgenic zebrafish. Cancer Res 64(20):7256–7262. doi: 10.1158/0008-5472.CAN-04-0931 CrossRefPubMedGoogle Scholar
  6. 6.
    Langenau DM, Jette C, Berghmans S, Palomero T, Kanki JP, Kutok JL, Look AT (2005) Suppression of apoptosis by bcl-2 overexpression in lymphoid cells of transgenic zebrafish. Blood 105(8):3278–3285. doi: 10.1182/blood-2004-08-3073 CrossRefPubMedGoogle Scholar
  7. 7.
    Patton EE, Widlund HR, Kutok JL, Kopani KR, Amatruda JF, Murphey RD, Berghmans S, Mayhall EA, Traver D, Fletcher CD, Aster JC, Granter SR, Look AT, Lee C, Fisher DE, Zon LI (2005) BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol 15(3):249–254. doi: 10.1016/j.cub.2005.01.031 CrossRefPubMedGoogle Scholar
  8. 8.
    Feng H, Langenau DM, Madge JA, Quinkertz A, Gutierrez A, Neuberg DS, Kanki JP, Look AT (2007) Heat-shock induction of T-cell lymphoma/leukaemia in conditional Cre/lox-regulated transgenic zebrafish. Br J Haematol 138(2):169–175. doi: 10.1111/j.1365-2141.2007.06625.x CrossRefPubMedGoogle Scholar
  9. 9.
    Langenau DM, Keefe MD, Storer NY, Guyon JR, Kutok JL, Le X, Goessling W, Neuberg DS, Kunkel LM, Zon LI (2007) Effects of RAS on the genesis of embryonal rhabdomyosarcoma. Genes Dev 21(11):1382–1395. doi: 10.1101/gad.1545007 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Le X, Langenau DM, Keefe MD, Kutok JL, Neuberg DS, Zon LI (2007) Heat shock-inducible Cre/Lox approaches to induce diverse types of tumors and hyperplasia in transgenic zebrafish. Proc Natl Acad Sci U S A 104(22):9410–9415. doi: 10.1073/pnas.0611302104 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Chen YH, Wang YH, Yu TH, Wu HJ, Pai CW (2009) Transgenic zebrafish line with over-expression of Hedgehog on the skin: a useful tool to screen Hedgehog-inhibiting compounds. Transgenic Res 18(6):855–864. doi: 10.1007/s11248-009-9275-y CrossRefPubMedGoogle Scholar
  12. 12.
    Dovey M, White RM, Zon LI (2009) Oncogenic NRAS cooperates with p53 loss to generate melanoma in zebrafish. Zebrafish 6(4):397–404. doi: 10.1089/zeb.2009.0606 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ju B, Spitsbergen J, Eden CJ, Taylor MR, Chen W (2009) Co-activation of hedgehog and AKT pathways promote tumorigenesis in zebrafish. Mol Cancer 8:40. doi: 10.1186/1476-4598-8-40 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Santoriello C, Gennaro E, Anelli V, Distel M, Kelly A, Koster RW, Hurlstone A, Mione M (2010) Kita driven expression of oncogenic HRAS leads to early onset and highly penetrant melanoma in zebrafish. PLoS One 5(12), e15170. doi: 10.1371/journal.pone.0015170 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Leacock SW, Basse AN, Chandler GL, Kirk AM, Rakheja D, Amatruda JF (2012) A zebrafish transgenic model of Ewing's sarcoma reveals conserved mediators of EWS-FLI1 tumorigenesis. Dis Model Mech 5(1):95–106. doi: 10.1242/dmm.007401 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lee LM, Seftor EA, Bonde G, Cornell RA, Hendrix MJ (2005) The fate of human malignant melanoma cells transplanted into zebrafish embryos: assessment of migration and cell division in the absence of tumor formation. Dev Dyn 233(4):1560–1570. doi: 10.1002/dvdy.20471 CrossRefPubMedGoogle Scholar
  17. 17.
    Nicoli S, Ribatti D, Cotelli F, Presta M (2007) Mammalian tumor xenografts induce neovascularization in zebrafish embryos. Cancer Res 67(7):2927–2931. doi: 10.1158/0008-5472.CAN-06-4268 CrossRefPubMedGoogle Scholar
  18. 18.
    Stoletov K, Montel V, Lester RD, Gonias SL, Klemke R (2007) High-resolution imaging of the dynamic tumor cell vascular interface in transparent zebrafish. Proc Natl Acad Sci U S A 104(44):17406–17411. doi: 10.1073/pnas.0703446104 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Marques IJ, Weiss FU, Vlecken DH, Nitsche C, Bakkers J, Lagendijk AK, Partecke LI, Heidecke CD, Lerch MM, Bagowski CP (2009) Metastatic behaviour of primary human tumours in a zebrafish xenotransplantation model. BMC Cancer 9:128. doi: 10.1186/1471-2407-9-128 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Eguiara A, Holgado O, Beloqui I, Abalde L, Sanchez Y, Callol C, Martin AG (2011) Xenografts in zebrafish embryos as a rapid functional assay for breast cancer stem-like cell identification. Cell Cycle 10(21):3751–3757. doi: 10.4161/cc.10.21.17921 CrossRefPubMedGoogle Scholar
  21. 21.
    Zhao C, Wang X, Zhao Y, Li Z, Lin S, Wei Y, Yang H (2011) A novel xenograft model in zebrafish for high-resolution investigating dynamics of neovascularization in tumors. PLoS One 6(7), e21768. doi: 10.1371/journal.pone.0021768 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Drabsch Y, He S, Zhang L, Snaar-Jagalska BE, ten Dijke P (2013) Transforming growth factor-beta signalling controls human breast cancer metastasis in a zebrafish xenograft model. Breast Cancer Res 15(6):R106. doi: 10.1186/bcr3573 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    van der Ent W, Burrello C, Teunisse AF, Ksander BR, Van der Velden PA, Jager MJ, Jochemsen AG, Snaar-Jagalska BE (2014) Modelling of human uveal melanoma in zebrafish xenograft embryos. Invest Ophthalmol Vis Sci. doi: 10.1167/iovs.14-15202 PubMedGoogle Scholar
  24. 24.
    van der Ent W, Jochemsen AG, Teunisse AF, Krens SF, Szuhai K, Spaink HP, Hogendoorn PC, Snaar-Jagalska BE (2014) Ewing sarcoma inhibition by disruption of EWSR1-FLI1 transcriptional activity and reactivation of p53. J Pathol 233(4):415–424. doi: 10.1002/path.4378 CrossRefPubMedGoogle Scholar
  25. 25.
    He S, Lamers GE, Beenakker JW, Cui C, Ghotra VP, Danen EH, Meijer AH, Spaink HP, Snaar-Jagalska BE (2012) Neutrophil-mediated experimental metastasis is enhanced by VEGFR inhibition in a zebrafish xenograft model. J Pathol 227(4):431–445. doi: 10.1002/path.4013 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Rampazzo E, Persano L, Pistollato F, Moro E, Frasson C, Porazzi P, Della Puppa A, Bresolin S, Battilana G, Indraccolo S, Te Kronnie G, Argenton F, Tiso N, Basso G (2013) Wnt activation promotes neuronal differentiation of glioblastoma. Cell Death Dis 4:e500. doi: 10.1038/cddis.2013.32 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Tang Q, Abdelfattah NS, Blackburn JS, Moore JC, Martinez SA, Moore FE, Lobbardi R, Tenente IM, Ignatius MS, Berman JN, Liwski RS, Houvras Y, Langenau DM (2014) Optimized cell transplantation using adult rag2 mutant zebrafish. Nat Methods 11(8):821–824. doi: 10.1038/nmeth.3031 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    He S, Krens SG, Zhan H, Gong Z, Hogendoorn PC, Spaink HP, Snaar-Jagalska BE (2011) A DeltaRaf1-ER-inducible oncogenic zebrafish liver cell model identifies hepatocellular carcinoma signatures. J Pathol 225(1):19–28. doi: 10.1002/path.2936 CrossRefPubMedGoogle Scholar
  29. 29.
    Peterson RT, Link BA, Dowling JE, Schreiber SL (2000) Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc Natl Acad Sci U S A 97(24):12965–12969. doi: 10.1073/pnas.97.24.12965 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Stern HM, Zon LI (2003) Cancer genetics and drug discovery in the zebrafish. Nat Rev Cancer 3(7):533–539. doi: 10.1038/nrc1126 CrossRefPubMedGoogle Scholar
  31. 31.
    Goessling W, North TE, Zon LI (2007) New waves of discovery: modeling cancer in zebrafish. J Clin Oncol 25(17):2473–2479. doi: 10.1200/JCO.2006.08.9821 CrossRefPubMedGoogle Scholar
  32. 32.
    Wang W, Liu X, Gelinas D, Ciruna B, Sun Y (2007) A fully automated robotic system for microinjection of zebrafish embryos. PLoS One 2(9), e862. doi: 10.1371/journal.pone.0000862 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hogg RC, Bandelier F, Benoit A, Dosch R, Bertrand D (2008) An automated system for intracellular and intranuclear injection. J Neurosci Methods 169(1):65–75. doi: 10.1016/j.jneumeth.2007.11.028 CrossRefPubMedGoogle Scholar
  34. 34.
    Carvalho R, de Sonneville J, Stockhammer OW, Savage ND, Veneman WJ, Ottenhoff TH, Dirks RP, Meijer AH, Spaink HP (2011) A high-throughput screen for tuberculosis progression. PLoS One 6(2), e16779. doi: 10.1371/journal.pone.0016779 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Spaink HP, Cui C, Wiweger MI, Jansen HJ, Veneman WJ, Marin-Juez R, de Sonneville J, Ordas A, Torraca V, van der Ent W, Leenders WP, Meijer AH, Snaar-Jagalska BE, Dirks RP (2013) Robotic injection of zebrafish embryos for high-throughput screening in disease models. Methods 62(3):246–254. doi: 10.1016/j.ymeth.2013.06.002 CrossRefPubMedGoogle Scholar
  36. 36.
    Veneman WJ, Marin-Juez R, de Sonneville J, Ordas A, Jong-Raadsen S, Meijer AH, Spaink HP (2014) Establishment and optimization of a high throughput setup to study Staphylococcus epidermidis and Mycobacterium marinum infection as a model for drug discovery. J Vis Exp 88:e51649. doi: 10.3791/51649 PubMedGoogle Scholar
  37. 37.
    Veneman WJ, Stockhammer OW, de Boer L, Zaat SA, Meijer AH, Spaink HP (2013) A zebrafish high throughput screening system used for Staphylococcus epidermidis infection marker discovery. BMC Genomics 14:255. doi: 10.1186/1471-2164-14-255 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hendrix MJ, Seftor EA, Seftor RE, Kasemeier-Kulesa J, Kulesa PM, Postovit LM (2007) Reprogramming metastatic tumour cells with embryonic microenvironments. Nat Rev Cancer 7(4):246–255. doi: 10.1038/nrc2108 CrossRefPubMedGoogle Scholar
  39. 39.
    Wang J, Cao Z, Zhang XM, Nakamura M, Sun M, Hartman J, Harris RA, Sun Y, Cao Y (2015) Novel mechanism of macrophage-mediated metastasis revealed in a zebrafish model of tumor development. Cancer Res 75(2):306–315. doi: 10.1158/0008-5472.CAN-14-2819 CrossRefPubMedGoogle Scholar
  40. 40.
    Herbomel P, Thisse B, Thisse C (1999) Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development 126(17):3735–3745PubMedGoogle Scholar
  41. 41.
    Davis JM, Clay H, Lewis JL, Ghori N, Herbomel P, Ramakrishnan L (2002) Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity 17(6):693–702CrossRefPubMedGoogle Scholar
  42. 42.
    Clay H, Davis JM, Beery D, Huttenlocher A, Lyons SE, Ramakrishnan L (2007) Dichotomous role of the macrophage in early Mycobacterium marinum infection of the zebrafish. Cell Host Microbe 2(1):29–39. doi: 10.1016/j.chom.2007.06.004 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Le Guyader D, Redd MJ, Colucci-Guyon E, Murayama E, Kissa K, Briolat V, Mordelet E, Zapata A, Shinomiya H, Herbomel P (2008) Origins and unconventional behavior of neutrophils in developing zebrafish. Blood 111(1):132–141. doi: 10.1182/blood-2007-06-095398 CrossRefPubMedGoogle Scholar
  44. 44.
    Chang TY, Shi P, Steinmeyer JD, Chatnuntawech I, Tillberg P, Love KT, Eimon PM, Anderson DG, Yanik MF (2014) Organ-targeted high-throughput in vivo biologics screen identifies materials for RNA delivery. Integr Biol 6(10):926–934. doi: 10.1039/c4ib00150h CrossRefGoogle Scholar
  45. 45.
    Adatto I, Lawrence C, Thompson M, Zon LI (2011) A new system for the rapid collection of large numbers of developmentally staged zebrafish embryos. PLoS One 6(6), e21715. doi: 10.1371/journal.pone.0021715 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Peterson RT, Fishman MC (2011) Designing zebrafish chemical screens. Methods Cell Biol 105:525–541. doi: 10.1016/B978-0-12-381320-6.00023-0 CrossRefPubMedGoogle Scholar
  47. 47.
    Pfriem A, Pylatiuk C, Alshut R, Ziegener B, Schulz S, Bretthauer G (2012) A modular, low-cost robot for zebrafish handling. Conf Proc IEEE Eng Med Biol Soc 2012:980–983. doi: 10.1109/EMBC.2012.6346097 PubMedGoogle Scholar
  48. 48.
    Mandrell D, Truong L, Jephson C, Sarker MR, Moore A, Lang C, Simonich MT, Tanguay RL (2012) Automated zebrafish chorion removal and single embryo placement: optimizing throughput of zebrafish developmental toxicity screens. J Lab Autom 17(1):66–74. doi: 10.1177/2211068211432197 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Pulak R (2006) Techniques for analysis, sorting, and dispensing of C. elegans on the COPAS flow-sorting system. Methods Mol Biol 351:275–286. doi: 10.1385/1-59745-151-7:275 PubMedGoogle Scholar
  50. 50.
    Graf SF, Hotzel S, Liebel U, Stemmer A, Knapp HF (2011) Image-based fluidic sorting system for automated Zebrafish egg sorting into multiwell plates. J Lab Autom 16(2):105–111. doi: 10.1016/j.jala.2010.11.002 CrossRefPubMedGoogle Scholar
  51. 51.
    Khoshmanesh K, Akagi J, Hall CJ, Crosier KE, Crosier PS, Cooper JM, Wlodkowic D (2012) New rationale for large metazoan embryo manipulations on chip-based devices. Biomicrofluidics 6(2):24102–2410214. doi: 10.1063/1.3699971 CrossRefPubMedGoogle Scholar
  52. 52.
    Akagi J, Khoshmanesh K, Evans B, Hall CJ, Crosier KE, Cooper JM, Crosier PS, Wlodkowic D (2012) Miniaturized embryo array for automated trapping, immobilization and microperfusion of zebrafish embryos. PLoS One 7(5), e36630. doi: 10.1371/journal.pone.0036630 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Akagi J, Zhu F, Hall CJ, Crosier KE, Crosier PS, Wlodkowic D (2014) Integrated chip-based physiometer for automated fish embryo toxicity biotests in pharmaceutical screening and ecotoxicology. Cytometry A 85(6):537–547. doi: 10.1002/cyto.a.22464 CrossRefPubMedGoogle Scholar
  54. 54.
    Wang KI, Salcic Z, Yeh J, Akagi J, Zhu F, Hall CJ, Crosier KE, Crosier PS, Wlodkowic D (2013) Toward embedded laboratory automation for smart Lab-on-a-Chip embryo arrays. Biosens Bioelectron 48:188–196. doi: 10.1016/j.bios.2013.04.033 CrossRefPubMedGoogle Scholar
  55. 55.
    Zheng C, Zhou H, Liu X, Pang Y, Zhang B, Huang Y (2014) Fish in chips: an automated microfluidic device to study drug dynamics in vivo using zebrafish embryos. Chem Commun (Camb) 50(8):981–984. doi: 10.1039/c3cc47285j CrossRefGoogle Scholar
  56. 56.
    Wielhouwer EM, Ali S, Al-Afandi A, Blom MT, Riekerink MB, Poelma C, Westerweel J, Oonk J, Vrouwe EX, Buesink W, vanMil HG, Chicken J, van't Oever R, Richardson MK (2011) Zebrafish embryo development in a microfluidic flow-through system. Lab Chip 11(10):1815–1824. doi: 10.1039/c0lc00443j CrossRefPubMedGoogle Scholar
  57. 57.
    Zhu F, Akagi J, Hall CJ, Crosier KE, Crosier PS, Delaage P, Wlodkowic D (2013) A high-throughput lab-on-a-chip interface for zebrafish embryo tests in drug discovery and ecotoxicology. pp 892345–892349Google Scholar
  58. 58.
    Bischel LL, Mader BR, Green JM, Huttenlocher A, Beebe DJ (2013) Zebrafish Entrapment By Restriction Array (ZEBRA) device: a low-cost, agarose-free zebrafish mounting technique for automated imaging. Lab Chip 13(9):1732–1736. doi: 10.1039/c3lc50099c CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Takaki K, Cosma CL, Troll MA, Ramakrishnan L (2012) An in vivo platform for rapid high-throughput antitubercular drug discovery. Cell Rep 2(1):175–184. doi: 10.1016/j.celrep.2012.06.008 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Ghotra VP, He S, de Bont H, van der Ent W, Spaink HP, van de Water B, Snaar-Jagalska BE, Danen EH (2012) Automated whole animal bio-imaging assay for human cancer dissemination. PLoS One 7(2), e31281. doi: 10.1371/journal.pone.0031281 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Westhoff JH, Giselbrecht S, Schmidts M, Schindler S, Beales PL, Tonshoff B, Liebel U, Gehrig J (2013) Development of an automated imaging pipeline for the analysis of the zebrafish larval kidney. PLoS One 8(12), e82137. doi: 10.1371/journal.pone.0082137 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Spomer W, Pfriem A, Alshut R, Just S, Pylatiuk C (2012) High-throughput screening of zebrafish embryos using automated heart detection and imaging. J Lab Autom 17(6):435–442. doi: 10.1177/2211068212464223 CrossRefPubMedGoogle Scholar
  63. 63.
    Pardo-Martin C, Chang TY, Koo BK, Gilleland CL, Wasserman SC, Yanik MF (2010) High-throughput in vivo vertebrate screening. Nat Methods 7(8):634–636. doi: 10.1038/nmeth.1481 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Chang TY, Pardo-Martin C, Allalou A, Wahlby C, Yanik MF (2012) Fully automated cellular-resolution vertebrate screening platform with parallel animal processing. Lab Chip 12(4):711–716. doi: 10.1039/c1lc20849g CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Walker SL, Ariga J, Mathias JR, Coothankandaswamy V, Xie X, Distel M, Koster RW, Parsons MJ, Bhalla KN, Saxena MT, Mumm JS (2012) Automated reporter quantification in vivo: high-throughput screening method for reporter-based assays in zebrafish. PLoS One 7(1), e29916. doi: 10.1371/journal.pone.0029916 CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Liu T, Li G, Nie J, Tarokh A, Zhou X, Guo L, Malicki J, Xia W, Wong ST (2008) An automated method for cell detection in zebrafish. Neuroinformatics 6(1):5–21. doi: 10.1007/s12021-007-9005-7 CrossRefPubMedGoogle Scholar
  67. 67.
    Kamali M, Day LJ, Brooks DH, Zhou X, O'Malley DM (2009) Automated identification of neurons in 3D confocal datasets from zebrafish brainstem. J Microsc 233(1):114–131. doi: 10.1111/j.1365-2818.2008.03102.x CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Peravali R, Gehrig J, Giselbrecht S, Lutjohann DS, Hadzhiev Y, Muller F, Liebel U (2011) Automated feature detection and imaging for high-resolution screening of zebrafish embryos. Biotechniques 50(5):319–324. doi: 10.2144/000113669 PubMedGoogle Scholar
  69. 69.
    Eames BF, DeLaurier A, Ullmann B, Huycke TR, Nichols JT, Dowd J, McFadden M, Sasaki MM, Kimmel CB (2013) FishFace: interactive atlas of zebrafish craniofacial development at cellular resolution. BMC Dev Biol 13:23. doi: 10.1186/1471-213X-13-23 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Nezhinsky A, Verbeek F (2010) Pattern recognition for high throughput zebrafish imaging using genetic algorithm optimization. In: Dijkstra TH, Tsivtsivadze E, Marchiori E, Heskes T (eds) Pattern recognition in bioinformatics, vol 6282, Lecture Notes in Computer Science. Springer, Heidelberg, pp 301–312. doi: 10.1007/978-3-642-16001-1_26 CrossRefGoogle Scholar
  71. 71.
    Annila T, Lihavainen E, Marques IJ, Williams DR, Yli-Harja O, Ribeiro A (2013) ZebIAT, an image analysis tool for registering zebrafish embryos and quantifying cancer metastasis. BMC Bioinformatics 14(Suppl 10):S5. doi: 10.1186/1471-2105-14-S10-S5
  72. 72.
    Corkery DP, Dellaire G, Berman JN (2011) Leukaemia xenotransplantation in zebrafish—chemotherapy response assay in vivo. Br J Haematol 153(6):786–789. doi: 10.1111/j.1365-2141.2011.08661.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Wietske van der Ent
    • 1
    • 2
  • Wouter J. Veneman
    • 1
  • Arwin Groenewoud
    • 1
  • Lanpeng Chen
    • 1
  • Claudia Tulotta
    • 1
  • Pancras C. W. Hogendoorn
    • 2
  • Herman. P. Spaink
    • 1
    Email author
  • B. Ewa Snaar-Jagalska
    • 1
    Email author
  1. 1.Institute of BiologyLeiden UniversityLeidenThe Netherlands
  2. 2.Department of PathologyLeiden University Medical CenterLeidenThe Netherlands

Personalised recommendations