Skip to main content

Structure Preserving Optimal Control of a Three-Dimensional Upright Gait

  • Chapter
  • First Online:
Multibody Dynamics

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 42))

Abstract

The optimal control of human locomotion requires simulation techniques, which handle the contact’s establishing and releasing between foot and ground. In this work, our aim is to optimally control the human upright gait using a structure preserving variational integrator, whereby different physiologically motivated cost functions are chosen and the obtained results are analysed with regard to the gait of humans. Thereby, the implemented three-dimensional rigid multibody system enables us to model forefoot as well as heel contact. The contacts between feet and ground are modelled as perfectly plastic impact and the orientation of the contact forces prevent penetration of the ground. To guarantee the structure preservation and the geometrical correctness, the non-smooth problem is solved including the contact configuration, time and force, in contrast to relying on a smooth approximation of the contact problem via a penalty potential. The applied mechanical integrator is based on a discrete constrained version of Lagrange-d’Alembert principle, which yields a symplectic momentum preserving method (see Leyendecker et al., Optim Control Appl Methods 31:505–528, 2009, [31] for details).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ackermann M, Schiehlen W (2006) Dynamic analysis of human gait disorder and metabolical cost estimation. Arch Appl Mech 75:569–594

    Article  MATH  Google Scholar 

  2. Aerospace Medical Research Laboratory (1975) Investigation of inertial properties of the human body. National Highway Traffic Safety Administration

    Google Scholar 

  3. Anderson FC, Pandy MG (2001) Dynamic optimization of human walking. J Biomech Eng 123:381–390

    Article  Google Scholar 

  4. Arnold VI (1989) Mathematical methods of classical mechanics. Springer, New York

    Book  Google Scholar 

  5. Betsch P (2005) The discrete null space method for the energy consistent integration of constrained mechanical systems. Part I: holonomic constraints. Comput Methods Appl Mech Eng 194:5159–5190

    Article  MathSciNet  MATH  Google Scholar 

  6. Betsch P, Leyendecker S (2006) The discrete null space method for the energy consistent integration of constrained mechanical systems. Part II: multibody dynamics. Int J Numer Methods Eng 67:499–552

    Article  MathSciNet  MATH  Google Scholar 

  7. Betsch P, Steinmann P (2001) Constrained integration of rigid body dynamics. Comput Methods Appl Mech Eng 191:467–488

    Article  MathSciNet  MATH  Google Scholar 

  8. Betts JT (2009) Practical methods for optimal control and estimation using nonlinear programming, 2nd edn. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  9. Biess A, Liebermann D, Flash T (2007) A computational model for redundant human three-dimensional pointing movements: integration of independent spatial and temporal motor plans simplifies movement dynamics. J Neurosci 27:13045–13064

    Article  Google Scholar 

  10. BostonDynamics (2013) PETMAN. http://www.bostondynamics.com/robot_petman.html

  11. Chevallereau C, Aoustin Y (2001) Optimal reference trajectories for walking and running of a biped robot. Robotica 19:557–569

    Article  Google Scholar 

  12. Collins SH, Adamczyk PG, Kuo AD (2009) Dynamic arm swinging in human walking. Proc R Soc Biol Sci 276:3679–3688

    Article  Google Scholar 

  13. Delp SL, Anderson FC, Arnold AS, Loan P, Habib A, John CT, Guendelmann E, Thelen DG (2007) Opensim: open-source software to create and analyze dynamics simulation of movements. IEEE Trans Biomed Eng 54:1940–1950

    Article  Google Scholar 

  14. Djoudi D, Chevallereau C, Aoustin Y (2005) Optimal reference motions for walking of a bipedal robot. In: Proceedings of the 2005 IEEE international conference, vol 1, pp 2002–2007

    Google Scholar 

  15. Espiau B, Goswami A (1994) Compass gait revisited. In: IFAC symposium on robot control

    Google Scholar 

  16. Felis M, Mombaur K (2013) Modeling and optimization of human walking. In: Mombaur K, Berns K (eds) Modeling simulation and optimization of bipedal walking. Springer, New York

    Google Scholar 

  17. Felis M, Mombaur K, Kadone H, Berthoz A (2013) Modeling and identification of emotional aspects of locomotion. J Comput Sci 4:255–261

    Article  Google Scholar 

  18. François C, Samson C (1996) Energy efficient control of running legged robots. A case study: the planar one-legged hopper. Institut National de Recherch en Informatique et en Automatigue

    Google Scholar 

  19. Friedmann T, Flash T (2009) Trajectory of the index finger during grasping. Exp Brain Res 196:497–509

    Article  Google Scholar 

  20. Fujimoto Y (2004) Trajectory generation of biped running robot with minimum energy consumption. In: IEEE international conference on robotics and automation

    Google Scholar 

  21. Geyer H, Herr H (2010) A muscle-reflex model that encodes principles of legged mechanics produces human walking dynamics and muscle activities. IEEE Trans Neural Syst Rehabil Eng 18:263–273

    Article  Google Scholar 

  22. Geyer H, Seyfarth A, Blickhan R (2003) Positive force feedback in bouncing gaits. Proc R Soc B: Biol Sci 270:2173–2183

    Article  Google Scholar 

  23. Geyer H, Seyfarth A, Blickhan R (2006) Compliant leg behaviour explains basic dynamics of walking and running. Proc R Soc B: Biol Sci 273:2861–2867

    Article  Google Scholar 

  24. Gross D, Hauger W, Schrder J, Wall WA (2010) Modeling, Technische Mechanik - Band 3: Kinetik. Springer, Berlin

    Book  Google Scholar 

  25. Günther M (1997) Computersimulation zur Synthetisierung des muskulär erzeugten menschlichen Gehens unter Verwendung eines biomechanischen Mehrkörpermodells. Eberhard-Karls-Universität zu Tübingen

    Google Scholar 

  26. Hicheur H, Kadone H, Grzes J, Berthoz A (2013) The combined role of motion-related cues and upper body posture for the expression of emotions during human walking. In: Mombaur K, Berns K (eds) Modeling, simulation and optimization of bipedal walking. Springer, New York

    Google Scholar 

  27. Koch MW, Leyendecker S (2013) Structure preserving simulation of monopedal jumping. Arch Mech Eng LX:127–146

    Article  Google Scholar 

  28. Kraft D (1985) On converting optimal control problems into nonlinear programming problems. Comput Math Program F15:261–280

    Article  MathSciNet  MATH  Google Scholar 

  29. Leyendecker S (2011) On optimal control simulations for mechanical systems. Technische Universität Kaiserslautern

    Google Scholar 

  30. Leyendecker S, Marsden JE, Ortiz M (2008) Variational integrators for constrained dynamical systems. Zeitschrift für Angewandte Mathematik und Mechanik 88:677–708

    Article  MathSciNet  MATH  Google Scholar 

  31. Leyendecker S, Ober-Blöbaum S, Marsden JE, Ortiz M (2009) Discrete mechanics and optimal control for constrained systems. Optim Control Appl Methods 31:505–528

    Article  MathSciNet  MATH  Google Scholar 

  32. Leyendecker S, Pekarek D, Marsden JE (2013) Structure preserving optimal control of three-dimensional compass gait. In: Mombaur K, Berns K (eds) Modeling, simulation and optimization of bipedal walking. Springer, New York

    Google Scholar 

  33. Li Yu, Wang W, Crompton RH, Gunther MM (2001) Free vertical moments and transverse forces in human walking and their role in relation to arm-swing. J Exp Biol 204:47–58

    Google Scholar 

  34. Lim CL, Jones NB, Spurgeon SK, Scott JJA (2003) Modelling of knee joint muscles during the swing phase of gait - a forward dynamics approach using MATLAB/Simulink. Simul Model Pract Theory 11:91–107

    Article  Google Scholar 

  35. Luksch T, Berns K (2013) Modeling, simulation and optimization of bipedal walking - modeling and control of dynamically walking bipedal robots. Springer, New York

    Google Scholar 

  36. Maas R, Leyendecker S (2013) Biomechanical optimal control of human arm motion. J Multi-body Dyn. doi:10.1177/1464419313488363

    Google Scholar 

  37. Marsden JE, Ratiu TS (1999) Introduction to mechanics and symmetry. Springer, New York

    Book  MATH  Google Scholar 

  38. Marsden JE, West M (2001) Discrete mechanics and variational integrators. Acta Numerica 10:357–514

    Article  MathSciNet  MATH  Google Scholar 

  39. Mianoski K, Schmitz N, Berns K (2007) Mechatronics of the humanoid robot roman. In: Kozłowski K (ed) Robot motion and control. Springer, London

    Google Scholar 

  40. Olver P (1986) Appliance of lie groups to differential equations. Springer, New York

    Book  Google Scholar 

  41. Pandy MG, Zajac FE, Sim E, Levine WS (1990) An optimal control model for maximum-height human jumping. J Biomech 23:1185–1198

    Article  Google Scholar 

  42. Pandy MG, Garner BA, Anderson FC (1995) Optimal control of non-ballistic muscular movements: a constraint-based performance criterion for rising from a chair. J Biomech Eng 117:15–26

    Google Scholar 

  43. Park J (2008) Synthesis of natural arm swing motion in human bipedal walking. J Biomech 41:1417–1426

    Article  Google Scholar 

  44. Ren C, Zhao L, Safonova A (2010) Human motion synthesises with optimisation-based graphs. Comput Graph Forum 29:1321–1328

    Article  Google Scholar 

  45. Rose J, Gamble JG (1994) Human walking. Williams & Wilkins, Baltimore

    Google Scholar 

  46. Roussel L, Candas-de Wit C, Goswami A (1998) Generation of energy optimal complete gait cycles for biped robots. In: Proceedings IEEE conference on robotics and automation

    Google Scholar 

  47. Safanova A, Hodgins JK (1992) Construction and optimal search of interpolated motion graphs. Ann Oper Res 57–373

    Google Scholar 

  48. Safanova A, Hodgins JK (2012) Human gait recognition using multisvm classifier. Int J Sci Res (IJSR)

    Google Scholar 

  49. Simmons G, Demiris Y (2015) Optimal robot arm control using the minimum variance model. J Robot Syst 22:677–690

    Article  MATH  Google Scholar 

  50. Soechting JF, Buneo CA, Herrmann U, Flanders M (1995) Moving effortlessly in three dimensions: does Donders’ law apply to arm movement? J Neurosci 15:6271–6280

    Google Scholar 

  51. Spektrum Akademischer Verlag (1999) Aufrechter Gang. http://www.spektrum.de/lexikon/biologie/aufrechter-gang/6056

  52. Uno Y, Kawato M, Suzuki R (1989) Formulation and control of the optimal trajectory in human multijoint arm movement. Biol Cybern 61:89–101

    Article  Google Scholar 

  53. von Stryk O, Bulirsch R (1992) Direct and indirect methods for trajectory optimization. Ann Oper Res 37:357–373

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigrid Leyendecker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Koch, M.W., Leyendecker, S. (2016). Structure Preserving Optimal Control of a Three-Dimensional Upright Gait. In: Font-Llagunes, J. (eds) Multibody Dynamics. Computational Methods in Applied Sciences, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-319-30614-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30614-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30612-4

  • Online ISBN: 978-3-319-30614-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics