Skip to main content

On the Frictional Contacts in Multibody System Dynamics

  • Chapter
  • First Online:
Multibody Dynamics

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 42))

Abstract

A comprehensive analysis on the use of different friction force models on the dynamic simulations of multibody mechanical systems is investigated in this work. In this context, some of the most relevant approaches for dealing with friction available in the literature are revisited. In a broad sense, the friction models can be classified into the statics and dynamics models, as they describe the steady-state behavior or utilize extra state variable to capture the dynamic phenomena, respectively. In this process, the main limitations and implications of the friction force models are briefly analyzed. The dynamic responses of a single-mass one degree-of-freedom system with permanent contact, as well as a multibody model of double pendulum impacting the ground at its tip, are examined to analyze and compare the various friction laws. The obtained results suggest that the prediction of the dynamic behavior of multibody systems can strongly depend on the selection of the appropriate friction model as well as frictional parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amontons G (1699) On the resistance originating in machines. Proc French R Acad Sci 12:206–222

    Google Scholar 

  2. Coulomb CA (1785) Théorie des machines simples, en ayant égard au frottement de leurs parties, et à la roideur des cordages. Mémoire de Mathématique et de Physique, Paris, France

    Google Scholar 

  3. Morin AJ (1833) New friction experiments carried out at Metz in 1831–1833. Proc French R Acad Sci 4:1–128

    Google Scholar 

  4. Rabinowicz E (1951) The nature of the static and kinetic coefficients of friction. J Appl Phys 22:1373–1379

    Article  Google Scholar 

  5. Ścieszka SF, Jankowski A (1996) The importance of static friction characteristics of brake friction couple, and methods of testing. Tribotest 3:137–148

    Article  Google Scholar 

  6. Rabinowicz E (1956) Stick and slip. Sci Am 194:109–118

    Article  Google Scholar 

  7. Dieterich J (1978) Time-dependent friction and the mechanics of stick-slip. Pure Appl Geophys 116:790–806

    Article  Google Scholar 

  8. Johannes VI, Green MA, Brockley CA (1973) The role of the rate of application of the tangential force in determining the static friction coefficient. Wear 24:381–385

    Article  Google Scholar 

  9. Courtney-Pratt J, Eisner E (1957) The effect of a tangential force on the contact of metallic bodies. Proc Royal Soc 238:529–550

    Article  Google Scholar 

  10. Hsieh C, Pan Y-C (2000) Dynamic behavior and modelling of the pre-sliding static friction. Wear 242:1–17

    Article  Google Scholar 

  11. Stribeck R (1902) Die wesentlichen Eigenschaften der Gleitund Rollenlager. Zeitschrift des Vereines Deutscher Ingenieure 46:1342–1348, 1432–1438, 1463–1470

    Google Scholar 

  12. Hess DP, Soom A (1990) Friction at a lubricated line contact operating at oscillating sliding velocities. J Tribol 112:147–152

    Article  Google Scholar 

  13. Andersson S, Söderberg A, Björklund S (2007) Friction models for sliding dry, boundary and mixed lubricated contacts. Tribol Int 40:580–587

    Article  Google Scholar 

  14. Olsson H, Åström KJ, Canudas de Wit C, Gäfvert M, Lischinsky P (1998) Friction models and friction compensation. Eur J Control 4:176–195

    Article  MATH  Google Scholar 

  15. Iurian C, Ikhouane F, Rodellar J, Griñó R (2005) Identification of a system with dry friction. Technical Report, Universitat Politècnica de Catalunya, Spain

    Google Scholar 

  16. Marques F, Flores P, Lankarani H (2015) On the frictional contacts in multibody system dynamics. In: Proceedings of ECCOMAS thematic conference on multibody dynamics, Barcelona, Spain, 12

    Google Scholar 

  17. Threlfall DC (1978) The inclusion of Coulomb friction in mechanisms programs with particular reference to DRAM au programme DRAM. Mech Mach Theory 13:475–483

    Article  Google Scholar 

  18. Ambrósio JAC (2003) Impact of rigid and flexible multibody systems: deformation description and contact model. Virtual Nonlinear Multibody Syst 103:57–81

    Article  MATH  Google Scholar 

  19. Tustin A (1947) The effects of backlash and of speed-dependent friction on the stability of closed-cycle control systems. J Inst Electr Eng 94:143–151

    Google Scholar 

  20. Popp K, Stelter P (1990) Nonlinear oscillations of structures induced by dry friction. Nonlinear Dyn Eng Syst, pp 233–240

    Google Scholar 

  21. Armstrong-Hélouvry B (1991) Control of machines with friction. Kluwer Academic Publishers, Norwell

    Book  MATH  Google Scholar 

  22. Makkar C, Dixon WE, Sawyer WG, Hu G (2005) A new continuously differentiable friction model for control systems design. In: Proceedings of the 2005 IEEE/ASME, international conference on advanced intelligent mechatronics, pp 600–605

    Google Scholar 

  23. Bo LC, Pavelescu D (1982) The friction-speed relation and its influence on the critical velocity of stick-slip motion. Wear 82:277–289

    Article  Google Scholar 

  24. Karnopp D (1985) Computer simulation of stick-slip friction in mechanical dynamic systems. J Dyn Syst Meas Control 107:100–103

    Article  Google Scholar 

  25. Leine RI, van Campen DH, de Kraker A, van den Steen L (1998) Stick-slip vibrations induced by alternate friction models. Nonlinear Dyn 16:41–54

    Article  MATH  Google Scholar 

  26. Armstrong-Hélouvry B, Dupont P, Canudas de Wit C (1994) A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica 30:1083–1138

    Article  MATH  Google Scholar 

  27. Wojewoda J, Stefański A, Wiercigroch M, Kapitaniak T (2008) Hysteretic effects of dry friction: modelling and experimental studies. Philos Trans Royal Soc A 366:747–765

    Article  MathSciNet  MATH  Google Scholar 

  28. Awrejcewicz J, Grzelczyk D, Pyryev Y (2008) A novel dry friction modeling and its impact on differential equations computation and Lyapunov exponents estimation. J Vibroengineering 10:475–482

    MATH  Google Scholar 

  29. Dahl PR (1968) A solid friction model, Technical Report, The Aerospace Corporation, El Segundo, California

    Google Scholar 

  30. Dahl PR (1976) Solid friction damping in mechanical vibrations. AIAA J 14:1675–1682

    Article  Google Scholar 

  31. Pennestrì E, Valentini PP, Vita L (2007) Multibody dynamics simulation of planar linkages with Dahl friction. Multibody Syst Dyn 17:321–347

    Article  MathSciNet  MATH  Google Scholar 

  32. Ksentini O, Abbes MS, Abdessalem J, Chaari F, Haddar M (2012) Study of mass spring system subjected to Dahl friction. Int J Mech Syst Eng 2:34–41

    Google Scholar 

  33. Haessig DA, Friedland B (1991) On the modeling and simulation of friction. J Dyn Syst Meas Control 113:354–362

    Article  Google Scholar 

  34. Canudas de Wit C, Olsson H, Åström KJ, Lischinsky P (1995) A new model for control of systems with friction. IEEE Trans Autom Control 40:419–425

    Article  MathSciNet  MATH  Google Scholar 

  35. Dupont P, Armstrong B, Hayward V (2000) Elasto-plastic friction model: contact compliance and stiction. Proc 2000 Am Control Conf 2:1072–1077

    Google Scholar 

  36. Swevers J, Al-Bender F, Ganseman CG, Projogo T (2000) An integrated friction model structure with improved presliding behavior for accurate friction compensation. IEEE Trans Autom Control 45:675–686

    Article  MathSciNet  MATH  Google Scholar 

  37. Lampaert V, Al-Bender F, Swevers J (2003) A generalized maxwell-slip friction model appropriate for control purposes. In: Proceedings of IEEE International conference on physics and control, St. Petersburg, Russia, pp 1170–1178

    Google Scholar 

  38. Al-Bender F, Lampaert V, Swevers J (2004) A novel generic model at asperity level for dry friction force dynamics. Tribol Lett 16:81–93

    Article  Google Scholar 

  39. Gonthier Y, McPhee J, Lange C, Piedboeuf J-C (2004) A regularized contact model with asymmetric damping and dwell-time dependent friction. Multibody Syst Dyn 11:209–233

    Article  MATH  Google Scholar 

  40. De Moerlooze K, Al-Bender F, Van Brussel H (2010) A generalised asperity-based friction model. Tribol Lett 40:113–130

    Article  Google Scholar 

  41. Oleksowicz S, Mruk A (2011) A basic theoretical model for friction process at microasperity level. Tribol Trans 54:691–700

    Article  Google Scholar 

  42. Liang J, Fillmore S, Ma O (2012) An extended bristle friction force model with experimental validation. Mech Mach Theory 56:123–137

    Article  Google Scholar 

  43. Bengisu MT, Akay A (1994) Stability of friction-induced vibrations in multi-degree-of-freedom systems. J Sound Vib 171:557–570

    Article  MATH  Google Scholar 

  44. Do NB, Ferri AA, Bauchau OA (2007) Efficient simulation of a dynamic system with LuGre friction. J Comput Nonlinear Dyn 2:281–289

    Article  Google Scholar 

  45. Saha A, Wiercigroch M, Jankowski K, Wahi P, Stefański A (2015) Investigation of two different friction models from the perspective of friction-induced vibrations. Tribol Int 90:185–197

    Article  Google Scholar 

  46. Nikravesh PE (1988) Computer-aided analysis of mechanical systems. Prentice Hall, Englewood Cliffs

    Google Scholar 

  47. Lankarani HM, Nikravesh PE (1990) A contact force model with hysteresis damping for impact analysis of multibody systems. J Mech Des 112:369–376

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filipe Marques .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marques, F., Flores, P., Lankarani, H.M. (2016). On the Frictional Contacts in Multibody System Dynamics. In: Font-Llagunes, J. (eds) Multibody Dynamics. Computational Methods in Applied Sciences, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-319-30614-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30614-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30612-4

  • Online ISBN: 978-3-319-30614-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics