Coherent Structures in a Turbulent Swirling Jet Under Vortex Breakdown. 3D PIV Measurements

  • Sergey V. Alekseenko
  • Vladimir M. Dulin
  • M. P. Tokarev
  • Dmitriy M. Markovich
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 185)

Abstract

The current study reports on spatial structure of a global mode of self-sustaining oscillations in a turbulent swirling jet under vortex breakdown conditions. Ensembles of 2D and 3D velocity fields were measured by stereoscopic and tomographic PIV systems, respectively, and were analysed via proper orthogonal decomposition. For the 2D PIV, the spatial resolution was sufficient to resolve most of the turbulent kinetic energy of the turbulent flow. The resolution in the case of tomographic PIV was lower, but the 3D instantaneous velocity fields unambiguously revealing that the global mode corresponds to a spiralling structure, counter-winded to the direction of the jet swirl.

References

  1. 1.
    A.K. Gupta, D.G. Lilley, N. Syred, Swirl Flows (Abacus Press, Kent, England, 1984)Google Scholar
  2. 2.
    S.H. Park, H.D. Shin, Measurements of entrainment characteristics of swirling jets. Int. J. Heat Mass Transfer 36, 4009–4020 (1993)CrossRefGoogle Scholar
  3. 3.
    R. Örlü, P.H. Alfredsson, An experimental study of the near-field mixing characteristics of a swirling jet. Flow Turbul. Combust. 80, 323–350 (2008)Google Scholar
  4. 4.
    N. Syred, N.A. Chigier, J.M. Beér, Flame stabilization in recirculation zones of jets with swirl. Proc. Combust. Inst. 13, 617–624 (1971)CrossRefGoogle Scholar
  5. 5.
    R. Weber, J. Dugué, Combustion accelerated swirling flows in high confinements. Prog. Energy Combust. Sci. 18, 349–367 (1992)CrossRefGoogle Scholar
  6. 6.
    Y. Huang, V. Yang, Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energy Combust. Sci. 35, 293–364 (2009)CrossRefGoogle Scholar
  7. 7.
    S.V. Alekseenko, P.A. Kuibin, V.L. Okulov, in Theory of concentrated vortices: an Introduction (Springer, 2007)Google Scholar
  8. 8.
    V. Shtern, F. Hussain, Collapse, symmetry, breaking, and hysteresis in swirling lows. Annu. Rev. Fluid Mech. 31, 537–566 (1999)MathSciNetCrossRefGoogle Scholar
  9. 9.
    A. Yu. Snegirev, J.A. Marsden, J. Francis, G.M. Makhviladze, Numerical studies and experimental observations of whirling flames. Int. J. Heat Mass Transf. 47, 2523–2539 (2004)CrossRefMATHGoogle Scholar
  10. 10.
    K., Kuwana, K. Sekimoto, K. Saito, F.A. Williams, Scaling fire whirls. Fire Saf. J. 43, 252–257 (2004)Google Scholar
  11. 11.
    A.Y. Varaksin, M.E. Romash, V.N. Kopeitsev, M.A. Gorbachev, Physical simulation of air tornados: some dimensionless parameters. High Temp. 49, 310–313 (2011)Google Scholar
  12. 12.
    D.S. Nolan, Threedimensional instabilities in tornado-like vortices with secondary circulations. J. Fluid Mech. 711, 61–100 (2012)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    A.Y. Varaksin, M.V. Protasov, M.E. Romash, V.N. Kopeitsev, Generation of free concentrated fire vortices under laboratory conditions. High Temp. 53, 595–598Google Scholar
  14. 14.
    F. Gallaire, J.-M. Chomaz, Mode selection in swirling jet experiments: a linear stability analysis. J. Fluid Mech. 494, 223–253 (2003)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    T. Loiseleux, J.-M. Chomaz, Breaking of rotational symmetry in a swirling jet experiment. Phys. Fluids 15, 511–523 (2003)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    S. Leibovich, The structure of vortex breakdown. Annu. Rev. Fluid Mech. 10, 221 (1978)CrossRefGoogle Scholar
  17. 17.
    O. Lucca-Negro, T. O’Doherty, Vortex breakdown: a review. Prog. Energy Combust. Sci. 27, 431–522 (2001)CrossRefGoogle Scholar
  18. 18.
    P. Billant, J.-M. Chomaz, P. Huerre, Experimental study of vortex breakdown in swirling jets. J. Fluid Mech. 376, 183–219 (1998)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    M.R. Ruith, P. Chen, E. Meiburg, T. Maxworthy, Three-dimensional vortex breakdown in swirling jets and wakes: direct numerical simulation. J. Fluid Mech. 486, 331–378 (2003)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    H. Liang, T. Maxworthy, An experimental investigation of swirling jets. J. Fluid Mech. 525, 115–159 (2005)CrossRefMATHGoogle Scholar
  21. 21.
    C.E. Cala, E.C. Fernandes, M.V. Heitor, S.I. Shtork, Coherent structures in unsteady swirling jet flow. Exp. Fluids 40, 267–276 (2006)CrossRefGoogle Scholar
  22. 22.
    M. Legrand, J. Nogueira, A. Lecuona, S. Nauri, P.A. Rodríguez, Atmospheric low swirl burner flow characterization with Stereo-PIV. Exp. Fluids 48, 901–913 (2010)CrossRefGoogle Scholar
  23. 23.
    P. Holmes, J.L. Lumley, G. Berkooz, in Turbulence, coherent structures, dynamical systems and symmetry (Cambridge University Press, 1996)Google Scholar
  24. 24.
    K. Oberleithner, M. Sieber, C.N. Nayeri, C.O. Paschereit, C. Petz, H.-C. Hege, B.R. Noack, I. Wygnanski, Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J. Fluid Mech. 679, 383–414 (2011)CrossRefMATHGoogle Scholar
  25. 25.
    M. Stöhr, I. Boxx, C.D. Carter, W. Meier, Experimental study of vortex-flame interaction in a gas turbine model combustor. Combust. Flame 159, 2636–2649 (2012)CrossRefGoogle Scholar
  26. 26.
    D.M. Markovich, S.S. Abdurakipov, L.M. Chikishev, V.M. Dulin, K. Hanjalic, Comparative analysis of low- and high-swirl confined flames and jets by proper orthogonal and dynamic mode decompositions. Phys. Fluids 26, 065109 (2014)CrossRefGoogle Scholar
  27. 27.
    P.J. Schmid, Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    G.E. Elsinga, F. Scarano, B. Wieneke, B.W. van Oudheusden, Tomographic particle image velocimetry. Exp. Fluids 41, 933–947 (2006)CrossRefGoogle Scholar
  29. 29.
    S.V. Alekseenko, V.M. Dulin, YuS Kozorezov, D.M. Markovich, Effect of axisymmetric forcing on structure of a swirling turbulent jet. Int. J. Heat Fluid Flow 29, 1699–1715 (2008)CrossRefGoogle Scholar
  30. 30.
    M.V. Alekseenko, A.V. Bilsky, V.M. Dulin, L.A. Kozinkin, D.M. Markovich, M.P. Tokarev, Diagnostics of jet flows by using tomographic particle image velocimetry. Optoelectr. Instrum. Data Process. 50, 457–465 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sergey V. Alekseenko
    • 1
    • 2
  • Vladimir M. Dulin
    • 1
    • 2
  • M. P. Tokarev
    • 1
    • 2
  • Dmitriy M. Markovich
    • 1
    • 2
  1. 1.Kutateladze Institute of Thermophysics, Siberian Branch of RASNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations