Skip to main content

Abstract

GreatSPN is a tool for the stochastic analysis of systems modeled as (stochastic) Petri nets. This chapter describes the evolution of the GreatSPN framework over its life span of 30 years, from the first stochastic Petri net analyzer implemented in Pascal, to the current, fancy, graphical interface that supports a number of different model analyzers. This chapter reviews, with the help of a manufacturing system example, how GreatSPN is currently used for an integrated qualitative and quantitative analysis of Petri net systems, ranging from symbolic model checking techniques to a stochastic analysis whose efficiency is boosted by lumpability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Firing times are random variables with negative exponential distributions.

  2. 2.

    Firing times are random variables with general distributions.

  3. 3.

    The formalism was first introduced with the name of Well-Formed Nets, but recently it has been replaced by the new name Symmetric Nets, better emphasizing its specific features.

References

  1. Ajmone Marsan M, Balbo G, Ciardo G, Conte G (1984) A software tool for the automatic analysis of generalized stochastic Petri net models. In: Proceedings of the 1st international conference on modeling techniques and tools for performance analysis, INRIA, Paris, France, pp 243–258

    Google Scholar 

  2. Ajmone Marsan M, Conte G, Balbo G (1984) A class of generalized stochastic Petri nets for the performance evaluation of multiprocessor systems. ACM Trans Comput Syst 2:93–122

    Article  Google Scholar 

  3. Ajmone Marsan M, Balbo G, Conte G, Donatelli S, Franceschinis G (1995) Modeling with generalized stochastic Petri nets. Wiley, New York. http://www.di.unito.it/~greatspn

  4. Ajmone Marsan M, Balbo G, Conte G (2000) The early days of GSPNs. In: Performance evaluation: origins and directions. Springer, London, pp 505–512

    Google Scholar 

  5. Amparore E, Beccuti M, Donatelli S (2014) (stochastic) Model checking in GreatSPN. Lecture notes in computer science (including subseries Lecture notes in artificial intelligence and lecture notes in bioinformatics), vol 8489, LNCS, pp 354–363

    Google Scholar 

  6. Amparore EG (2015) Reengineering the editor of the GreatSPN framework. In: Moldt D, Rölke H, Störrle H (eds) Petri nets and software engineering. International workshop, PNSE’15, Brussels, Belgium, 22–23 June 2015. Proceedings, CEUR-WS.org, CEUR workshop proceedings, vol 1372, pp 153–170

    Google Scholar 

  7. Amparore EG, Donatelli S (2010) MC4CSL\(^{TA}\): an efficient model checking tool for CSL\(^{TA}\). In: International conference on quantitative evaluation of systems. IEEE Computer Society, Los Alamitos, CA, USA, pp 153–154

    Google Scholar 

  8. APNNtoolbox (2015) APNNtoolbox webpage. http://ls4-www.cs.tu-dortmund.de/APNN-TOOLBOX/

  9. Baarir S, Beccuti M, Dutheillet C, Franceschinis G, Haddad S (2011) Lumping partially symmetrical stochastic models. Perform Eval 68(1):21–44

    Article  Google Scholar 

  10. Balbo G, Chiola G (1989) Stochastic Petri net simulation. In: Proceedings of the 21st conference on winter simulation. ACM, New York, NY, USA, WSC ’89, pp 266–276

    Google Scholar 

  11. Balbo G, Beccuti M, De Pierro M, Franceschini G (2011) Computing first passage time distributions in stochastic well-formed nets. SIGSOFT Softw Eng Notes 36(5):7–18

    Article  Google Scholar 

  12. Beccuti M, Franceschinis G (2012) Efficient simulation of stochastic well-formed nets through symmetry exploitation. In: Proceedings—winter simulation conference

    Google Scholar 

  13. Bucci G, Carnevali L, Ridi L, Vicario E (2010) Oris: a tool for modeling, verification and evaluation of real-time systems. Int J Softw Tools Technol Transfer 12(5):391–403

    Article  Google Scholar 

  14. Buchholz P, Ciardo G, Donatelli S, Kemper P (2000) Complexity of memory-efficient Kronecker operations with applications to the solution of Markov models. INFORMS J Comput 12(3):203–222

    Article  MathSciNet  MATH  Google Scholar 

  15. Chiola G (1985) A Software package for the analysis of Generalized Stochastic Petri Net models. In: International workshop on timed Petri Nets. IEEE Computer Society, Washington, DC, USA, pp 136–143

    Google Scholar 

  16. Chiola G (1988) Compiling techniques for the analysis of stochastic Petri nets. In: Proceedings of the 4th international conference on modeling techniques and tools for computer performance evaluation, AFCET, pp 11–24

    Google Scholar 

  17. Chiola G, Ajmone Marsan M, Balbo G, Conte G (1993) Generalized stochastic Petri nets: a definition at the net level and its implications. IEEE Trans Softw Eng 19(2):89–107

    Article  Google Scholar 

  18. Chiola G, Dutheillet C, Franceschinis G, Haddad S (1993) Stochastic well-formed colored nets and symmetric modeling applications. IEEE Trans Comput 42(11):1343–1360

    Article  Google Scholar 

  19. Clark G, Courtney T, Daly D, Deavours D, Derisavi S, Doyle J, Sanders W, Webster P (2001) The mobius modeling tool. In: Proceedings of the 9th international workshop on Petri nets and performance models, pp 241–250

    Google Scholar 

  20. Clarke EM, Emerson EA (1982) Design and synthesis of synchronization skeletons using branching-time temporal logic. In: Kozen D (ed) Logics of programs, workshop, Yorktown Heights, New York, May 1981. Lecture notes in computer science, vol 131. Springer, pp 52–71

    Google Scholar 

  21. Donatelli S, Haddad S, Sproston J (2009) Model checking timed and stochastic properties with CSL\(^{TA}\). IEEE Trans Softw Eng 35(2):224–240

    Article  Google Scholar 

  22. Gaeta R (1996) Efficient discrete-event simulation of colored Petri nets. IEEE Trans Softw Eng 22(9):629–639

    Article  Google Scholar 

  23. German R (2000) Performance analysis of communication systems with non-Markovian stochastic Petri nets. Wiley, New York

    MATH  Google Scholar 

  24. GreatSPN (2015) GreatSPN webpage. http://www.di.unito.it/~greatspn/index.html

  25. Heiner M, Herajy M, Liu F, Rohr C, Schwarick M (2012) Snoopy—a unifying Petri net tool. In: Application and theory of Petri nets—33rd international conference, PETRI NETS 2012, Hamburg, Germany, 25–29 June 2012. Proceedings, pp 398–407

    Google Scholar 

  26. Heiner M, Rohr C, Schwarick M (2013) MARCIE—model checking and reachability analysis done efficiently. In: Colom JM, Desel J (eds) Application and theory of Petri nets and concurrency—34th international conference, PETRI NETS 2013, Milan, Italy, 24–28 June 2013. Proceedings, Lecture notes in computer science, vol 7927. Springer, pp 389–399

    Google Scholar 

  27. Heiner M, Schwarick M, Wegener J (2015) Charlie—an extensible petri net analysis tool. In: Devillers RR, Valmari A (eds) Application and theory of Petri nets and concurrency—36th international conference, PETRI NETS 2015, Brussels, Belgium, 21–26 June 2015. Proceedings, Lecture notes in computer science, vol 9115. Springer, pp 200–211

    Google Scholar 

  28. Hirel C, Tuffin B, Trivedi KS (2000) Spnp: stochastic Petri nets, version 6.0. In: Proceedings of the 11th international conference on computer performance evaluation: modelling techniques and tools. Springer, London, UK, UK, TOOLS ’00, pp 354–357

    Google Scholar 

  29. ISO/IEC (2011) Standard ISO/IEC 15909–2:2011, Systems and software engineering—high-level Petri nets. http://www.iso.org/iso/catalogue_detail?csnumber=43538. Accessed 05 Aug 2015

  30. Jensen K, Wirth N (1975) PASCAL user manual and report. Springer, New York

    Book  MATH  Google Scholar 

  31. Kounev S, Spinner S, Meier P (2010) Qpme 2.0—a tool for stochastic modeling and analysis using queueing Petri nets. In: Sachs K, Petrov I, Guerrero P (eds) From active data management to event-based systems and more. Lecture notes in computer science, vol 6462. Springer, Berlin, pp 293–311

    Google Scholar 

  32. Molloy M (1982) Performance analysis using stochastic Petri nets. IEEE Trans Comput C-31(9):913–917

    Google Scholar 

  33. Molloy MK, Riddle P (1986) The Stochastic Petri Net Analyzer system design tool for bit-mapped workstations. University of Texas at Austin, Computer Science Department

    Google Scholar 

  34. Petri C (1962) Kommunikation mit Automaten. PhD thesis, Schriften des Institutes fr Instrumentelle Matematik, Bonn

    Google Scholar 

  35. Sanders W, Meyer J (2001) Stochastic activity networks: formal definitions and concepts. In: Brinksma E, Hermanns H, Katoen JP (eds) Lectures on formal methods and performance analysis. Lecture notes in computer science, vol 2090. Springer, Berlin, pp 315–343

    Google Scholar 

  36. Smart (2015) SMART webpage. http://www.cs.ucr.edu/~ciardo/SMART

  37. Teruel E, Franceschinis G, De Pierro M (2003) Well-defined generalized stochastic Petri nets: a net-level method to specify priorities. IEEE Trans Softw Eng 29(11):962–973

    Article  Google Scholar 

  38. Zimmermann A (2012) Modeling and evaluation of stochastic Petri nets with timenet 4.1. In: Gaujal B, Jean-Marie A, Jorswieck EA, Seuret A (eds) 6th international ICST conference on performance evaluation methodologies and tools, Cargese, Corsica, France, 9–12 October 2012. ICST/IEEE, pp 54–63

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvio Gilberto Amparore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Amparore, E.G., Balbo, G., Beccuti, M., Donatelli, S., Franceschinis, G. (2016). 30 Years of GreatSPN. In: Fiondella, L., Puliafito, A. (eds) Principles of Performance and Reliability Modeling and Evaluation. Springer Series in Reliability Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-30599-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30599-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30597-4

  • Online ISBN: 978-3-319-30599-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics