Skip to main content

Fitting Phase-Type Distributions and Markovian Arrival Processes: Algorithms and Tools

  • Chapter
  • First Online:

Part of the book series: Springer Series in Reliability Engineering ((RELIABILITY))

Abstract

This chapter provides a comprehensive survey of PH (phase-type) distribution and MAP (Markovian arrival process) fitting. The PH distribution and MAP are widely used in analytical model-based performance evaluation because they can approximate non-Markovian models with arbitrary accuracy as Markovian models. Among a number of past research results on PH/MAP fitting, we present the mathematical definition of the PH distribution and MAP, and summarize the most recent state-of-the-art results on the fitting methods. We also offer an overview of the software tools for PH/MAP fitting.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The PH parameters can be defined by \((\varvec{\alpha }, \varvec{T})\). In this chapter, since the diagonals of \(\varvec{T}\) are determined after estimating nondiagonals of \(\varvec{T}\) and \(\varvec{\tau }\), the PH parameters include \(\varvec{\tau }\).

  2. 2.

    When the number of samples increases, the log-likelihood function can be approximated by a multivariate normal distribution.

  3. 3.

    The MCMC is a sample-based approximation method for posterior distributions.

  4. 4.

    In the implementation, to avoid underflow in \(\hat{\varvec{f}}_k\) and \(\hat{\varvec{b}}_k\), the scaling technique should be applied.

References

  1. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Proceedings of the 2nd international symposium on information theory. Akademiai Kiado, pp 267–281

    Google Scholar 

  2. Aldous D, Shepp L (1987) The least variable phase-type distribution is Erlang. Stoch Models 3:467–473

    Article  MathSciNet  MATH  Google Scholar 

  3. Altiok T (1985) On the phase-type approximations of general distributions. IEEE Trans 17:110–116

    Article  Google Scholar 

  4. Andersen AT, Nielsen BF (1998) A Markovian approach for modeling packet traffic with long-range dependence. IEEE J Sel Areas Commun 16(5):719–732

    Article  Google Scholar 

  5. Asmussen S, Koole G (1993) Marked point processes as limits of Markovian arrival streams. J Appl Probab 30:365–372

    Article  MathSciNet  MATH  Google Scholar 

  6. Asmussen S, Nerman O, Olsson M (1996) Fitting phase-type distributions via the EM algorithm. Scand J Stat 23(4):419–441

    MATH  Google Scholar 

  7. Baum LE, Petrie T, Soules G, Weiss N (1970) A maximization technique occurring in the statistical analysis of probabilistic function of Markov chains. Ann Math Stat 41(1):164–171

    Article  MathSciNet  MATH  Google Scholar 

  8. Bladt M, Gonzalez A, Lauritzen SL (2003) The estimation of phase-type related functionals using Markov chain Monte Carlo methods. Scand Act J 4:280–300

    Article  MathSciNet  MATH  Google Scholar 

  9. Bobbio A, Cumani A (1992) ML estimation of the parameters of a PH distribution in triangular canonical form. In: Balbo G, Serazzi G (eds) Computer performance evaluation. Elsevier Science Publishers, pp 33–46

    Google Scholar 

  10. Bobbio A, Horváth A, Telek M (2005) Matching three moments with minimal acyclic phase type distributions. Stoch Models 21(2/3):303–326

    Article  MathSciNet  MATH  Google Scholar 

  11. Bobbio A, Telek M (1994) A benchmark for PH estimation algorithms: result for acyclic-PH. Stoch Models 10:661–677

    Article  MathSciNet  MATH  Google Scholar 

  12. Bolch G, Greiner S, de Meer H, Trivedi KS (2006) Queueing networks and Markov chains: modeling and performance evaluation with computer science applications, 2nd edn. Wiley, New York

    Book  MATH  Google Scholar 

  13. Breuer L (2002) An EM algorithm for batch Markovian arrival processes and its comparison to a simpler estimation procedure. Ann Oper Res 112:123–138

    Article  MathSciNet  MATH  Google Scholar 

  14. Buchholz P (2003) An EM-algorithm for MAP fitting from real traffic data. In: Kemper P, Sanders WH (eds) Computer performance evaluation modelling techniques and tools, vol 2794. Springer, LNCS, pp 218–236

    Chapter  Google Scholar 

  15. Buchholz P, Kriege J (2009) A heuristic approach for fitting MAPs to moments and joint moments. In: Proceedings of the 6th international conference on the quantitative evaluation of systems, pp 53–62

    Google Scholar 

  16. Buchholz P, Panchenko A (2004) A two-step EM-algorithm for MAP fitting. In: Proceedings of 19th international symposium on computer and information sciences, LNCS, vol 3280. Springer, pp 217–227

    Google Scholar 

  17. BuTools: http://webspn.hit.bme.hu/telek/tools/butools/butools.html

  18. Casale G, Zhang E, Smirni E (2008) KPC-toolbox: simple yet effective trace fitting using Markovian arrival processes. In: Proceedings of 5th international conference on quantitative evaluation of systems (QEST2008), pp 83–92

    Google Scholar 

  19. Cumani A (1982) On the canonical representation of homogeneous Markov processes modelling failure-time distributions. Microelectron Reliab 22:583–602

    Article  Google Scholar 

  20. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Series B B-39:1–38

    Google Scholar 

  21. Deng L, Mark J (1993) Parameter estimation for Markov modulated Poisson processes via the EM algorithm with time discretization. Telecommun Syst 1:321–338

    Article  Google Scholar 

  22. Distefano S, Trivedi KS (2013) Non-Markovian state-space models in dependability evaluation. Qual Reliab Eng Int 29(2):225–239

    Article  Google Scholar 

  23. EMpht: http://home.math.au.dk/asmus/pspapers.html

  24. Fackrell M (2005) Fitting with matrix-exponential distributions. Stoch Models 21:377–400

    MathSciNet  Google Scholar 

  25. Fearnhead P, Sherlock C (2006) An exact Gibbs sampler for the Markov modulated Poisson processe. J R Stat Soc Series B 66(5):767–784

    Article  MathSciNet  MATH  Google Scholar 

  26. Feldmann A, Whitt W (1998) Fitting mixtures of exponentials to long-tail distributes to analyze network performance models. Perform Eval 31:245–258

    Article  Google Scholar 

  27. G-FIT: http://ls4-www.cs.tu-dortmund.de/home/thummler/mainE.html

  28. He QH, Zhang H (2008) An algorithm for computing minimal Coxian representations. INFORMS J Comput 20(2):179–190

    Article  MathSciNet  MATH  Google Scholar 

  29. He QM, Neuts MF (1998) Markov chains with marked transitions. Stoch Proces Appl 74:37–52

    Article  MathSciNet  MATH  Google Scholar 

  30. Heffes H, Lucantoni DM (1986) A Markov modulated characterization of packetized voice and data traffic and related statistical multiplexer performance. IEEE J Sel Areas Commun 4(6):856–868

    Article  Google Scholar 

  31. Horváth A, Telek M (2002) PhFit: a general phase-type fitting tool. In: Proceedings of computer performance evaluation/tools, lecture notes in computer science, vol. 2324. Springer, pp 82–91

    Google Scholar 

  32. Horváth G, Buchholz P, Telek M (2005) A MAP fitting approach with independent approximation of the inter-arrival time distribution and the lag correlation. In: Proceedings of the 2nd international conference on the quantitative evaluation of systems. IEEE CS Press, pp 124–133

    Google Scholar 

  33. Horváth G, Okamura H (2013) A fast EM algorithm for fitting marked Markovian arrival processes with a new special structure. In: Proceedings of European performance engineering workshop, lecture notes in computer science (LNCS), vol 8168, pp 119–133

    Google Scholar 

  34. HyperStar: http://www.mi.fu-berlin.de/inf/groups/ag-tech/projects/HyperStar/index.html

  35. Johnson MA (1993) Selecting parameters of phase distributions: combining nonlinear programming, heuristics, and Erlang distributions. ORSA J Comput 5:69–83

    Article  MATH  Google Scholar 

  36. Johnson MA, Taaffe MR (1989) Matching moments to phase distributions: mixtures of erlang distribution of common order. Stoch Models 5:711–743

    Article  MathSciNet  MATH  Google Scholar 

  37. Johnson MA, Taaffe MR (1990) Matching moments to phase distributions: density function shapes. Stoch Models 6:283–306

    Google Scholar 

  38. Johnson MA, Taaffe MR (1990) Matching moments to phase distributions: nonlinear programming approaches. Stoch Models 6:259–281

    Article  MathSciNet  MATH  Google Scholar 

  39. Johnson MA, Taaffe MR (1991) An investigation of phase-distribution moment-matching algorithms for use in queueing models. Queueing Syst 8:129–148

    Article  MathSciNet  MATH  Google Scholar 

  40. jPhaseFit: http://copa.uniandes.edu.co/?p=141

  41. Klemm A, Lindemann C, Lohmann M (2003) Traffic modeling of IP networks using the batch Markovian arrival process. Perform Eval 54:149–173

    Article  MATH  Google Scholar 

  42. mapfit: http://cran.r-project.org/web/packages/mapfit/index.html

  43. Marie R (1980) Calculating equilibrium probabilities for \(\lambda (n)\)/\({C}_k\)/1/\({N}\) queues. In: Proceedings of the 1980 international symposium on computer performance modelling, measurement and evaluation (SIGMETRICS’80). ACM Press, pp 117–125

    Google Scholar 

  44. McLachlan GJ, Jones PN (1988) Fitting mixture models to grouped and truncated data via the EM algorithm. Biometrics 44(2):571–578

    Article  MATH  Google Scholar 

  45. Mitchell K, van de Liefvoort A (2003) Approximation models of feed-forward G/G/1/N queueing networks with correlated arrivals. Perform Eval 52(2–4):137–152

    Article  Google Scholar 

  46. Momentmatching: http://www.cs.cmu.edu/osogami/code/momentmatching/index.html

  47. Neuts MF (1981) Matrix-geometric solutions in stochastic models. Johns Hopkins University Press, Baltimore

    MATH  Google Scholar 

  48. O’Cinneide CA (1989) On nonuniqueness of representations of phase-type distributons. Stoch Models 5:322–330

    MathSciNet  Google Scholar 

  49. O’Cinneide CA (1990) Characterization of phase-type distributions. Stoch Models 6:1–57

    Article  MathSciNet  MATH  Google Scholar 

  50. O’Cinneide CA (1991) Phase-type distributions and invariant polytopes. Adv Appl Probab 23:515–535

    Article  MathSciNet  MATH  Google Scholar 

  51. O’Cinneide CA (1993) Triangular order of triangular phase-type distributions. Stoch Models 9:507–529

    Article  MathSciNet  MATH  Google Scholar 

  52. Okamura H, Dohi T (2009) Faster maximum likelihood estimation algorithms for Markovian arrival processes. In: Proceedings of 6th international conference on quantitative evaluation of systems (QEST2009), pp 73–82

    Google Scholar 

  53. Okamura H, Dohi T (2015) Mapfit: an R-based tool for PH/MAP parameter estimation. In: Proceedings of The 12th international conference on quantitative evaluation of systems (QEST2015), pp 105–112

    Google Scholar 

  54. Okamura H, Dohi T, Trivedi KS (2009) Markovian arrival process parameter estimation with group data. IEEE/ACM Trans Netw 17(4):1326–1339

    Article  Google Scholar 

  55. Okamura H, Dohi T, Trivedi KS (2011) A refined EM algorithm for PH distributions. Perform Eval 68(10):938–954

    Article  Google Scholar 

  56. Okamura H, Dohi T, Trivedi KS (2013) Improvement of EM algorithm for phase-type distributions with grouped and truncated data. Appl Stoch Models Bus Ind 29(2):141–156

    Article  MathSciNet  MATH  Google Scholar 

  57. Okamura H, Kishikawa H, Dohi T (2013) Application of deterministic annealing EM algorithm to MAP/PH parameter estimation. Telecommun Syst 54:79–90

    Article  Google Scholar 

  58. Okamura H, Watanabe R, Dohi T (2014) Variational Bayes for phase-type distribution. Commun Stat Theory Methods 43(8):2013–2044

    MathSciNet  MATH  Google Scholar 

  59. Olsson M (1996) Estimation of phase-type distributions from censored data. Scand J Stat 23:443–460

    MathSciNet  MATH  Google Scholar 

  60. Osogami T, Harchol-Balter M (2006) Closed form solutions for mapping general distributions to minimal PH distributions. Perform Eval 63(6):524–552

    Article  MATH  Google Scholar 

  61. Panchenko A, Thümmler A (2007) Efficient phase-type fitting with aggregated traffic traces. Perform Eval 64:629–645

    Article  Google Scholar 

  62. PhFit: http://webspn.hit.bme.hu/telek/tools.htm

  63. Reinecke P, Kraub T, Wolter K (2012) Cluster-based fitting of phase-type distributions to empirical data. Comput Math Appl 64:3840–3851

    Article  MathSciNet  MATH  Google Scholar 

  64. Roberts WJJ, Ephraim Y, Dieguez E (2006) On Rydén’s EM algorithm for estimating MMPPs. IEEE Signal Process Lett 13(6):373–376

    Article  Google Scholar 

  65. Rydén T (1996) An EM algorithm for estimation in Markov-modulated Poisson processes. Comput Stat Data Anal 21(4):431–447

    Article  MathSciNet  MATH  Google Scholar 

  66. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  MathSciNet  MATH  Google Scholar 

  67. Telek M, Heindl A (2002) Matching moments for acyclic discrete and continuos phase-type distributions of second order. Int J Simul Syst Sci Technol 3(3–4):47–57

    Google Scholar 

  68. Telek M, Horváth G (2007) A minimal representation of Markov arrival processess and a moments matching method. Perform Eval 64(9–12):1153–1168

    Article  Google Scholar 

  69. Thümmler A, Buchholz P, Telek M (2006) A novel approach for phase-type fitting with the EM algorithm. IEEE Trans Dependable Secure Comput 3(3):245–258

    Article  Google Scholar 

  70. Toolbox K, http://www.cs.wm.edu/MAPQN/kpctoolbox.html

  71. Trivedi KS (2001) Probability and statistics with reliability, queueing, and computer sciences applications, 2nd edn. Wiley, New York

    Google Scholar 

  72. van der Heijden MC (1988) On the three-moment approximation of a general distribution by a Coxian distribution. Probab Eng Inf Sci 2:257–261

    Article  Google Scholar 

  73. van de Liefvoort A (1990) The moment problem for continuous distributions. Technical report, University of Missouri, WP-CM-1990-02, Kansas City

    Google Scholar 

  74. Watanabe R, Okamura H, Dohi T (2012) An efficient MCMC algorithm for countinuous PH distributions. In: Laroque C, Himmelspach J, Pasupathy R, Rose O, Uhrmacher AM (eds) Proceedings of The 2012 winter simulation conference, p 12

    Google Scholar 

  75. Wu CFJ (1983) On the convergence properties of the EM algorithm. Ann Stat 11:95–103

    Article  MathSciNet  MATH  Google Scholar 

  76. Yamaguchi Y, Okamura H, Dohi T (2010) Variational Bayesian approach for estimating parameters of a mixture of Erlang distributions. Commun Stat Theory Methods 39(3):2333–2350

    Article  MathSciNet  MATH  Google Scholar 

  77. Yoshihara T, Kasahara S, Takahashi Y (2001) Practical time-scale fitting of self-similar traffic with Markov modulated Poisson process. Telecommun Syst 17(1–2):185–211

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors (H.O. and T.D.) are grateful to Prof. Kishor S. Trivedi who stimulated their research interests in model-based performance evaluation through his many papers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Okamura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Okamura, H., Dohi, T. (2016). Fitting Phase-Type Distributions and Markovian Arrival Processes: Algorithms and Tools. In: Fiondella, L., Puliafito, A. (eds) Principles of Performance and Reliability Modeling and Evaluation. Springer Series in Reliability Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-30599-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30599-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30597-4

  • Online ISBN: 978-3-319-30599-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics