Skip to main content

Neural Stem Cells: Functional Multipotency and Spinal Cord Injury Research Protocols

  • Chapter
  • First Online:
Working with Stem Cells
  • 1062 Accesses

Abstract

Human neural stem cells (hNSCs) have been the focus in basic science and translational research as well as in investigative clinical applications. The endeavors partly aim to devise hNSCs into stem cell-based therapeutic modalities, disease models, and investigative tools for treating neurological abnormalities, understanding pathophysiology, and advancing fundamental neurobiology, respectively. Therefore, the capability to perform reliable derivation, effective expansion, and long term maintenance of primordial and uncommitted NSCs in vitro is essential for growing the capacities of stem cell biology and regenerative medicine. In this chapter, we systematically describe a set of protocols and unique procedures that have been developed in the principal investigator’s laboratories. These regimens have been, over years, productively used to derive, propagate, maintain, and differentiate operationally defined human somatic NSCs or NSCs of different origins. Moreover, we summarize our established multimodal methodologies for characterizing the functional multipotency of NSCs and their value in basic as well as translational studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adepoju A, Micali N, Ogawa K, Hoeppner DJ, McKay RD (2014) FGF2 and insulin signaling converge to regulate cyclin D expression in multipotent neural stem cells. Stem Cells 32:770–778

    Article  CAS  PubMed  Google Scholar 

  • Brustle O, Choudhary K, Karram K, Huttner A, Murray K, Dubois-Dalcq M, McKay RD (1998) Chimeric brains generated by intraventricular transplantation of fetal human brain cells into embryonic rats. Nat Biotechnol 16:1040–1044

    Article  CAS  PubMed  Google Scholar 

  • Cepko CL (1989) Immortalization of neural cells via retrovirus-mediated oncogene transduction. Annu Rev Neurosci 12:47–65

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Qian K, Chen W, Hu B, Blackbourn LW 4th, Du Z, Ma L, Liu H, Knobel KM, Ayala M, Zhang SC (2015) Human-derived neural progenitors functionally replace astrocytes in adult mice. J Clin Invest 125:1033–1342

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi H, Liao WL, Newton KM, Onario RC, King AM, Desilets FC, Woodard EJ, Eichler ME, Frontera WR, Sabharwal S, Teng YD (2005) Respiratory abnormalities resulting from midcervical spinal cord injury and their reversal by serotonin 1A agonists in conscious rats. J Neurosci 25:4550–4559

    Google Scholar 

  • De Juan Romero C, Borrell V (2015) Coevolution of radial glial cells and the cerebral cortex. Glia 63:1303–1319

    Article  PubMed  Google Scholar 

  • Deleyrolle LP, Reynolds BA (2009) Isolation, expansion, and differentiation of adult mammalian neural stem and progenitor cells using the neurosphere assay. Methods Mol Biol 549:91–101

    Article  CAS  PubMed  Google Scholar 

  • Dottori M, Tay C, Hughes SM (2011) Neural development in human embryonic stem cells-applications of lentiviral vectors. J Cell Biochem 112:1955–1962

    Article  CAS  PubMed  Google Scholar 

  • Emborg ME, Liu Y, Xi J, Zhang X, Yin Y, Lu J, Joers V, Swanson C, Holden JE, Zhang SC (2013) Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain. Cell Rep 3:646–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    Article  CAS  PubMed  Google Scholar 

  • Ferrari D, Binda E, De Filippis L, Vescovi AL (2010) Isolation of neural stem cells from neural tissues using the neurosphere technique. Curr Protoc Stem Cell Biol Chapter 2:Unit2D.6

    Google Scholar 

  • Flax JD, Aurora S, Yang C, Simonin C, Wills AM, Billinghurst LL, Jendoubi M, Sidman RL, Wolfe JH, Kim SU, Snyder EY (1998) Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes. Nat Biotechnol 16:1033–1039

    Article  CAS  PubMed  Google Scholar 

  • Florio M, Huttner WB (2014) Neural progenitors, neurogenesis and the evolution of the neocortex. Development 141:2182–2194

    Article  CAS  PubMed  Google Scholar 

  • Gage FH, Temple S (2013) Neural stem cells: generating and regenerating the brain. Neuron 80:588–601

    Article  CAS  PubMed  Google Scholar 

  • Haragopal H, Yu D, Zeng X, Kim SW, Han IB, Ropper AE, Anderson JE, Teng YD (2015) Stemness enhancement of human neural stem cells following bone marrow MSC coculture. Cell Transplant 24:645–659

    Article  PubMed  Google Scholar 

  • Imitola J, Raddassi K, Park KI, Mueller FJ, Nieto M, Teng YD, Frenkel D, Li J, Sidman RL, Walsh CA, Snyder EY, Khoury SJ (2006) Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc Natl Acad Sci U S A 101:18117–18122

    Article  Google Scholar 

  • Jäderstad J, Jäderstad LM, Li J, Chintawar S, Salto C, Pandolfo M, Ourednik V, Teng YD, Sidman RL, Arenas E, Snyder EY, Herlenius E (2010) Communication via gap junctions underlies early functional and beneficial interactions between grafted neural stem cells and the host. Proc Natl Acad Sci U S A 107:5184–5189

    Article  PubMed  PubMed Central  Google Scholar 

  • Jia C, Yu D, Lamarre M, Leopold PL, Teng YD, Wang H (2014) Patterned electrospun nanofiber matrices via localized dissolution: potential for guided tissue formation. Adv Mater 26:8192–8197

    Article  CAS  PubMed  Google Scholar 

  • Kaplan PL, Simon S, Cartwright CA, Eckhart W (1987) cDNA cloning with a retrovirus expression vector: generation of a pp60c-src cDNA clone. J Virol 61:1731–1734

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kempermann G, Song H, Gage FH (2015) Neurogenesis in the adult hippocampus. Cold Spring Harb Perspect Biol 7:a018812

    Article  PubMed  Google Scholar 

  • Kim KS, Lee HJ, Jeong HS, Li J, Teng YD, Sidman RL, Snyder EY, Kim SU (2011) Self-renewal induced efficiently, safely, and effective therapeutically with one regulatable gene in a human somatic progenitor cell. Proc Natl Acad Sci U S A 108:4876–4881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Mitchell RR, McNicol JD, Shapovalova Z, Laronde S, Tanasijevic B, Milsom C, Casado F, Fiebig-Comyn A, Collins TJ, Singh KK, Bhatia M (2015) Single transcription factor conversion of human blood fate to NPCs with CNS and PNS developmental capacity. Cell Rep 11:1367–1376

    Article  CAS  PubMed  Google Scholar 

  • Li J, Gu X, Ma Y, Calicchio ML, Kong D, Teng YD, Yu L, Crain AM, Vartanian TK, Pasqualini R, Arap W, Libermann TA, Snyder EY, Sidman RL (2010) Nna1 mediates Purkinje cell dendritic development via lysyl oxidase propeptide and NF-κB signaling. Neuron 68:45–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim DA, Alvarez-Buylla A (2014) Adult neural stem cells stake their ground. Trends Neurosci 37:563–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukaszewicz AI, Anderson DJ (2011) Cyclin D1 promotes neurogenesis in the developing spinal cord in a cell cycle-independent manner. Proc Natl Acad Sci U S A 108:11632–11637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markowitz D, Goff S, Bank A (1988) Construction and use of a safe and efficient amphotropic packaging cell line. Virology 167:400–406

    Article  CAS  PubMed  Google Scholar 

  • Neri M, Maderna C, Ferrari D, Cavazzin C, Vescovi AL, Gritti A (2010) Robust generation of oligodendrocyte progenitors from human neural stem cells and engraftment in experimental demyelination models in mice. PLoS One 5:e10145

    Article  PubMed  PubMed Central  Google Scholar 

  • Park KI, Teng YD, Snyder EY (2002) The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nat Biotechnol 20:1111–1117

    Article  CAS  PubMed  Google Scholar 

  • Price J, Turner D, Cepko CL (1987) Lineage analysis in the vertebrate nervous system by retrovirous-mediated gene transfer. Proc Natl Acad Sci U S A 84(156):160

    Google Scholar 

  • Qian X, Davis AA, Goderie SK, Temple S (1997) FGF2 concentration regulated the generation of neurons and glia from multipotent cortical stem cells. Neuron 18:81–93

    Article  CAS  PubMed  Google Scholar 

  • Redmond DE Jr, Bjugstad KB, Teng YD, Ourednik V, Ourednik J, Wakeman DR, Parsons XH, Gonzalez R, Blanchard BC, Kim SU, Gu Z, Lipton SA, Markakis EA, Roth RH, Elsworth JD, Sladek JR Jr, Sidman RL, Snyder EY (2007) Behavioral improvement in a primate Parkinson’s model is associated with multiple homeostatic effects of human neural stem cells. Proc Natl Acad Sci U S A 104:12175–12180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ropper AE, Zeng X, Haragopal H, Anderson JE, Aljuboori, Z, Han Abd-El-Barr M, Lee HJ, Sidman RL, Snyder EY, Viapiano MS, Kim SU, Chi JH, Teng YD (2015) Targeted treatment of experimental spinal cord glioma with dual gene-engineered human neural stem cells. Neurosurgery. [Epub ahead of print]. PMID: 26671631

    Google Scholar 

  • Roy NS, Wang S, Jiang L, Kang J, Benraiss A, Harrison-Restelli C, Fraser RA, Couldwell WT, Kawaguchi A, Okano H, Nedergaard M, Goldman SA (2000) In vitro neurogenesis by progenitor cells isolated from the adult human hippocampus. Nat Med 6:271–277

    Article  CAS  PubMed  Google Scholar 

  • Roy NS, Chandler-Militello D, Lu G, Wang S, Goldman SA (2007) Retrovirally mediated telomerase immortalization of neural progenitor cells. Nat Protoc 2:2815–2825

    Article  CAS  PubMed  Google Scholar 

  • Ryder EF, Snyder EY, Cepko CL (1990) Establishment and characterization of multipotent neural cell lines using retrovirus vector mediated oncogene transfer. J Neurobiol 21:356–375

    Article  CAS  PubMed  Google Scholar 

  • Schmidt NO, Przylecki W, Yang W, Ziu M, Teng YD, Kim SU, Black PM, Aboody KS, Carroll RS (2005) Brain tumor tropism of transplanted human neural stem cells is induced by vascular endothelial growth factor. Neoplasia 7:623–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shihabuddin LS, Horner PJ, Ray J, Gage FH (2000) Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J Neurosci 20:8727–8735

    CAS  PubMed  Google Scholar 

  • Snyder EY, Teng YD (2012) Stem cells and spinal cord repair. N Engl J Med 366:1940–1942

    Article  CAS  PubMed  Google Scholar 

  • Snyder EY, Deitcher DL, Walsh C, Arnold-Aldea S, Hartwieg EA, Cepko CL (1992) Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell 68:33–51

    Article  CAS  PubMed  Google Scholar 

  • Snyder EY, Taylor RM, Wolfe JH (1995) Neural progenitor cell engraftment corrects lysosomal storage throughout the MPS VII mouse brain. Nature 374:367–370

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Okita K, Nakagawa M, Yamanaka S (2007a) Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2:3081–3089

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007b) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872

    Article  CAS  PubMed  Google Scholar 

  • Taylor RM, Lee JP, Palacino JJ, Bower KA, Li J, Vanier MT, Wenger DA, Sidman RL, Snyder EY (2006) Intrinsic resistance of neural stem cells to toxic metabolites may make them well suited for cell non-autonomous disorders: evidence from a mouse model of Krabbe leukodystrophy. J Neurochem 97:1585–1599

    Article  CAS  PubMed  Google Scholar 

  • Teng YD, Mocchetti I, Taveira-DaSilva AM, Gillis RA, Wrathall JR (1999) Basic fibroblast growth factor increases long-term survival of spinal motor neurons and improves respiratory function after experimental spinal cord injury. J Neurosci 19:7037–7047

    CAS  PubMed  Google Scholar 

  • Teng YD, Lavik EB, Qu X, Park KI, Ourednik J, Zurakowski D, Langer R, Snyder EY (2002a) Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci U S A 99:3024–3029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng YD, Park KI, Larvik EB, Langer R, Snyder EY (2002b) Stem cell culture: neural stem cells. In: Atala A, Lanzer RP (eds) Methods of tissue engineering. Academic Press, San Diego, pp 421–437

    Google Scholar 

  • Teng YD, Choi H, Onario RC, Zhu S, Desilets FC, Lan S, Woodard EJ, Snyder EY, Eichler ME, Friedlander RM (2004) Minocycline inhibits contusion-triggered mitochondrial cytochrome c release and mitigates functional deficits after spinal cord injury. Proc Natl Acad Sci U S A 101:3071–3076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng YD, Santos FN, Black PM, Konya D, Park KI, Sidman RL, Snyder EY (2008) Chapter 18: neural stem cells: multipotency beyond self-renewal and phenotypic differentiation. In: Atala A, Lanza R, Thomson JA, Nerem RM (eds) Principles of regenerative medicine. Elsevier, Inc., San Diego, pp 300–317

    Chapter  Google Scholar 

  • Teng YD, Kabatas S, Wakeman DR, Li J, Snyder EY, Sidman RL (2009) Chapter 16: functional multipotency of neural stem cells and its therapeutic implications. In: Ulrich H (ed) Perspectives of stem cells: from tools for studying mechanisms of neuronal differentiation towards therapy. Springer-Verlag, Inc., San Diego, pp 255–270

    Google Scholar 

  • Teng YD, Yu D, Ropper AE, Li J, Kabatas S, Wakeman DR, Wang J, Sullivan MP, Redmond DE Jr, Langer R, Snyder EY, Sidman RL (2011) Functional multipotency of stem cells: a conceptual review of neurotrophic factor-based evidence and its role in translational research. Curr Neuropharmacol 9:574–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng YD, Benn SC, Kalkanis SN, Shefner JM, Onario RC, Cheng B, Lachyankar MB, Marconi M, Li J, Yu D, Han I, Maragakis NJ, Lládo J, Erkmen K, Redmond DE Jr, Sidman RL, Przedborski S, Rothstein JD, Brown RH Jr, Snyder EY (2012) Multimodal actions of neural stem cells in a mouse model of ALS: a meta-analysis. Sci Transl Med 4:165ra164

    Google Scholar 

  • Vescovi AL, Parati EA, Gritti A, Poulin P, Ferrario M, Wanke E, Frolichsthal-Schoeller P, Cova L, Arcellana-Panlilio M, Colombo A, Galli R (1999) Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation. Exp Neurol 156:71–83

    Article  CAS  PubMed  Google Scholar 

  • Wakeman DR, Redmond DE Jr, Dodiya HB, Sladek JR Jr, Leranth C, Teng YD, Samulski RJ, Snyder EY (2014) Human neural stem cells survive long term in the midbrain of dopamine-depleted monkeys after GDNF overexpression and project neurites toward an appropriate target. Stem Cells Transl Med 3:692–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss S, Reynolds BA, Vescovi AL, Morshead C, Craig C, van der Kooy D (1996) Is there a neural stem cell in the mammalian forebrain. Trends Neurosci 19:387–393

    Article  CAS  PubMed  Google Scholar 

  • Wittko IM, Schänzer A, Kuzmichev A, Schneider FT, Shibuya M, Raab S, Plate KH (1999) VEGFR-1 regulates adult olfactory bulb neurogenesis and migration of neural progenitors in the rostral migratory stream in vivo. J Neurosci 29:8704–8714

    Article  Google Scholar 

  • Yu D, Neeley WL, Pritchard CD, Slotkin JR, Woodard EJ, Langer R, Teng YD (2009) Blockade of peroxynitrite-induced neural stem cell death in the acutely injured spinal cord by drug-releasing polymer. Stem Cells 27:1212–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The work at Teng Laboratories has been supported by Project ALS, NIH, VA, DoD, BSF, the Gordon Project to Treat and Cure Clinical Paralysis, and CASIS-NASA. We thank Dr. E. Snyder, Dr. R. Sidman, and Dr. R. Langer for their mentorship and support to our research work. Author contributions: YDT wrote and finalized the manuscript. XZ, IH and JEA actively participated in stem cell culture, cryoprotection, implantation preparation, and protocol updates in working with Dr. Teng. The authors hold no COI for this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang D. Teng .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Teng, Y.D., Zeng, X., Han, I., Anderson, J.E. (2016). Neural Stem Cells: Functional Multipotency and Spinal Cord Injury Research Protocols. In: Working with Stem Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-30582-0_18

Download citation

Publish with us

Policies and ethics