Skip to main content

Differentiation of Human Pluripotent Stem Cells into Cortical Neurons

  • Chapter
  • First Online:

Abstract

Human neurologic and psychiatric disorders comprise a wide range of diseases, characterized by a strong genetic influence. Mutations can affect a broad spectrum of molecular pathways in neural cells leading to disturbances in the fine tune development of the nervous system. While transgenic animal models have led to important insights into neurological disorders, the complex circuitry of the human brain is difficult to fully recapitulate in these models, often producing misleading phenotypic correlations. Moreover, the translation of therapeutic compounds that were successful in animal models to human patients revealed to be a daunting task, with very low rates of success. With the recent advent of human Pluripotent Stem Cells (PSCs) field, researchers have now the possibility of modeling the human brain development in vitro. Moreover, using cellular reprogramming, which allows conversion of patient adult cells to ESCs-like stages, it is now possible to obtain neurons from patients with any genetic background of interest. In addition, the use of PSCs to model neurons in vitro provides a drug-screening platform and also personalized medicine, bearing in mind the cell donor. Considering this, several protocols were developed to differentiate human PSCs into neurons. The present chapter aims to introduce a detailed protocol to acquire human cortical neurons in vitro. Finally, it also discusses the potential use of these cells and their impact on the field of neuroscience.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Altman J (1962) Are new neurons formed in the brains of adult mammals? Science 135(3509):1127–1128

    Google Scholar 

  • Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 23(2):185–188

    Article  CAS  PubMed  Google Scholar 

  • Ananiev G, Williams EC, Li H, Chang Q (2011) Isogenic pairs of wild type and mutant induced pluripotent stem cell (iPSC) lines from Rett syndrome patients as in vitro disease model. PLoS One 6(9):e25255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beltrão-Braga PCB, Pignatari GC, Russo FB, Fernandes IR, Muotri AR (2013) In-a-dish: induced pluripotent stem cells as a novel model for human diseases. Cytometry A 83(1):11–17

    Article  PubMed  Google Scholar 

  • Brocolli V, Giannelli SG, Mazzara PG (2014) Modeling physiological and pathological human neurogenesis in the dish. Front Neurosci 8:183

    Google Scholar 

  • Bystron I, Rakic P, Molnar Z, Blakemore C (2006) The first neurons of the human cerebral cortex. Nat Neurosci 9:880–886

    Article  CAS  PubMed  Google Scholar 

  • Caviness VS Jr, Takahashi T, Nowakowski RS (1995) Numbers, time and neocortical neuronogenesis: a general developmental and evolutionary model. Trends Neurosci 18(9):379–383

    Article  CAS  PubMed  Google Scholar 

  • Cheung AY, Horvath LM, Grafodatskaya D, Pasceri P, Weksberg R, Hotta A, Carrel L, Ellis J (2011) Isolation of MECP2-null Rett Syndrome patient hiPS cells and isogenic controls through X-chomosome inactivation. Hum Mol Genet 20(11):2103–2115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doi D, Samata B, Katsukawa M, Kikuchi T, Morizane A, Ono Y, Sekiguchi K, Nakagawa M, Parmar M, Takahashi J (2014) Isolation of human induced pluripotent stem cell-derived dopaminergic progenitors by cell sorting for successful transplantation. Stem Cell Rep 2(3):337–350

    Article  CAS  Google Scholar 

  • Dolmetsch R, Geschwind DH (2011) The human brain in a dish: the promise of iPSC-derived neurons. Cell 145(6):831–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dragunow M (2008) The adult human brain in preclinical drug development. Nat Rev Drug Discov 7(8):659–666

    Article  CAS  PubMed  Google Scholar 

  • Gu H, Yu SP, Gutekunst CA, Gross RE, Wei L (2013) Inhibition of the Rho signaling pathway improves neurite outgrowth and neuronal differentiation of mouse neural stem cells. Int J Physiol Pathophysiol Pharmacol 5(1):11–20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kandel E, Schwartz J, Jessell T (2000) Principles of neuroscience, 4th edn. McGraw-Hill Companies, New York. ISBN 0838577016, 9780838577011

    Google Scholar 

  • Khurana V, Tardiff DF, Chung CY, Lindquist S (2015) Toward stem cell-based phenotypic screens for neurodegenerative diseases. Nat Rev Neurol 11(6):339–350

    Article  CAS  PubMed  Google Scholar 

  • Kirkeby A, Grealish S, Wolf DA, Nelander J, Wood J, Lundblad M, Lindvall O, Parmar M (2012) Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Rep 1(6):703–714

    Article  CAS  PubMed  Google Scholar 

  • Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, Carrillo-Reid L, Auyeung G, Antonacci C, Buch A, Yang L, Beal MF, Surmeier DJ, Kordower JH, Tabar V, Studer L (2011) Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480:547–551

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lancaster MA, Knoblich JA (2014) Generation of cerebral organoids from human pluripotent stem cells. Nat Protoc 9(10):2329–2340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchetto MC, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y, Chen G, Gage FH, Muotri AR (2010a) A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143(4):527–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchetto MC, Winner B, Gage FH (2010b) Pluripotent stem cells in neurodegenerative and neurodevelopmental diseases. Hum Mol Genet 19(R1):R71–R76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maroof AM, Keros S, Tyson JA, Ying SW, Ganat YM, Merkle FT, Liu B, Goulburn A, Stanley EG, Elefanty EG, Widmer HR, Eggan K, Goldstein PA, Anderson SA, Studer L (2013) Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell 12:559–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muratore CR, Srikanth P, Callahan DG, Young-Pearse TL (2014) Comparison and optimization of hiPSC forebrain cortical differentiation protocols. PLoS One 9(8):e105807

    Article  PubMed  PubMed Central  Google Scholar 

  • Nicholas CR, Chen J, Tang Y, Southwell DG, Chalmers N, Vogt D, Arnold CM, Chen YJ, Stanley EG, Elefanty AG, Sasai Y, Alvarez-Buylla A, Rubenstein JL, Kriegstein A (2013) Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development. Cell Stem Cell 12:573–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Rahilly M (1999) The embryonic human brain: an atlas of developmental stages. Wiley-Liss, New York

    Google Scholar 

  • Schadt EE, Buchanan S, Brennand KJ, Merchant KM (2014) Evolving toward a human-cell based and multiscale approach to drug discovery for CNS disorders. Front Pharmacol 5:252

    Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Nowakowski RS, Caviness VS Jr (1995) Early ontogeny of the secondary proliferative population of the embryonic murine cerebral wall. J Neurosci 15:6058–6068

    CAS  PubMed  Google Scholar 

  • The Boulder Committee (1970) Embryonic vertebrate central nervous system: revised terminology. Anat Rec 166:257–261

    Article  Google Scholar 

  • Willyard C (2015) The boom in mini stomachs, brains, breasts, kidneys and more. Nature 523(7562):520–522

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cassiano Carromeu or Patricia Cristina Baleeiro Beltrão-Braga .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Carromeu, C., Vessoni, A., Mendes, A.P.D., Beltrão-Braga, P.C.B. (2016). Differentiation of Human Pluripotent Stem Cells into Cortical Neurons. In: Working with Stem Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-30582-0_10

Download citation

Publish with us

Policies and ethics