Returners and Explorers Dichotomy in Web Browsing Behavior—A Human Mobility Approach

  • Hugo S. Barbosa
  • Fernando B. de Lima Neto
  • Alexandre Evsukoff
  • Ronaldo Menezes
Part of the Studies in Computational Intelligence book series (SCI, volume 644)


A better understanding of the fundamental mechanisms underlying complex human dynamics is of major interest in contemporary social research. Over the last few years, researchers have made huge strides towards this understanding, thanks especially to the increasing availability of datasets containing digital traces of many human activities. In this work, we investigate Web browsing trajectories using a human mobility approach based on approximately four years of browsing history data. Our findings strongly suggest that return visitation patterns in browsing behaviors and in human mobility exhibit very similar scaling properties. Moreover, we classify Web users as returners and explorers based on their on-line activities, and show that at a population level, the distribution of both profiles agrees with empirical observations in human mobility. Finally, we create a network representation of the most popular websites from the aggregated browsing trajectories and uncover many functional clusters related with different users’ activities.


Mobility Network Human Mobility Graph Layout Mobile Phone Data Human Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge the partial support from National Science Foundation (NSF) grant No. 1152306. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF.


  1. 1.
    Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Rev. 51(4), 661–703 (2009)Google Scholar
  2. 2.
    Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47–97 (2002). JanMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Brockmann, D., Hufnagel, L., Geisel, T.: The scaling laws of human travel. Nature 439(7075), 462–465 (2006)Google Scholar
  4. 4.
    González, M.C., Hidalgo, C.A., Barabási, A.-L.: Understanding individual human mobility patterns. Nature 453(7196), 479–482 (2008)Google Scholar
  5. 5.
    Song, C., Koren, T., Wang, P., Barabási, A.-L.: Modelling the scaling properties of human mobility. Nat. Phys. 6(10), 818–823 (2010)Google Scholar
  6. 6.
    Szell, M., Sinatra, R., Petri, G., Thurner, S., Latora, V.: Understanding mobility in a social petri dish. Sci. Rep. 2, 1–6 (2012)Google Scholar
  7. 7.
    Brockmann, D.: Statistical mechanics: the physics of where to go. Nat. Phys. 6, 720–721 (2010)Google Scholar
  8. 8.
    Barabási, A.-L., Albert, R., Jeong, H.: Mean-field theory for scale-free random networks. Phys. A: Stat. Mech. Appl., 1–19 (1999)Google Scholar
  9. 9.
    Krapivsky, P., Redner, S.: Network growth by copying. Phys. Rev. E 71(3), 036118 (2005). MarMathSciNetCrossRefGoogle Scholar
  10. 10.
    Dorogovtsev, S.N., Mendes, J.F., Samukhin, A.N.: Structure of growing networks with preferential linking. Phys. Rev. Lett. 85(21), 4633–4636 (2000)Google Scholar
  11. 11.
    Simkin, M.V., Roychowdhury, V.P.: Do copied citations create renowned papers? Ann. Improb. Res. 11(1), 24–27 (2005). JanCrossRefGoogle Scholar
  12. 12.
    Barabási, A.-L.: The origin of bursts and heavy tails in human dynamics. Nature (2005)Google Scholar
  13. 13.
    Vázquez, A., Oliveira, J.G., Dezsö, Z., Goh, K.I., Kondor, I., Barabási, A.-L.: Modeling bursts and heavy tails in human dynamics. Phys. Rev. E 73(3), 036127 (2006)Google Scholar
  14. 14.
    Thiemann, C., Theis, F., Grady, D., Brune, R., Brockmann, D.: The structure of borders in a small world. PloS One 5(11), e15422 (2010). JanCrossRefGoogle Scholar
  15. 15.
    Zhao, K., Musolesi, M., Hui, P., Rao, W., Tarkoma, S.: Explaining the power-law distribution of human mobility through transportation modality decomposition. Sci. Rep. 5, 9136 (2015)CrossRefGoogle Scholar
  16. 16.
    Pappalardo, L., Simini, F., Rinzivillo, S., Pedreschi, D., Giannotti, F., Barabási, A.-L.: Returners and explorers dichotomy in human mobility. Nat. Commun. 6, 8166 (2015)Google Scholar
  17. 17.
    Grabowicz, P.A., Ramasco, J.J., Gonçalves, B., Eguíluz, V.M.: Entangling mobility and interactions in social media. PloS One, 1–16 (2014)Google Scholar
  18. 18.
    Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining—KDD ’11. ACM Press, New York, New York, USA (2011), p. 1082Google Scholar
  19. 19.
    Fruchterman, T.M.J., Reingold, E.M.: Graph Drawing by Force-directed Placement. Softw.-Pract. Exp. 21(November), 1129–1164 (1991)Google Scholar
  20. 20.
    Hasan, S., Schneider, C.M., Ukkusuri, S.V., González, M.C.: Spatiotemporal patterns of urban human mobility. J. Stat. Phys. 151, 304–318 (2012)Google Scholar
  21. 21.
    Krumme, C., Llorente, A., Cebrian, M., Pentland, A.S., Moro, E.: The predictability of consumer visitation patterns. Sci. Rep. 3, 1645 (2013)Google Scholar
  22. 22.
    Peixoto, T.P.: Hierarchical block structures and high-resolution model selection in large networks. Phys. Rev. X 4(1), 011047 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Hugo S. Barbosa
    • 1
  • Fernando B. de Lima Neto
    • 2
  • Alexandre Evsukoff
    • 3
  • Ronaldo Menezes
    • 1
  1. 1.BioComplex LaboratoryFlorida Institute of TechnologyMelbourneUSA
  2. 2.Polytechnic School, University of PernambucoRecifeBrazil
  3. 3.COPPE, Federal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations