Skip to main content

Qualitative Inductive Generalization and Confirmation

  • Chapter
Springer Handbook of Model-Based Science

Part of the book series: Springer Handbooks ((SHB))

  • 4766 Accesses

Abstract

Inductive generalization is a defeasible type of inference which we use to reason from the particular to the universal. First, a number of systems are presented that provide different ways of implementing this inference pattern within first-order logic. These systems are defined within the adaptive logics framework for modeling defeasible reasoning. Next, the logics are re-interpreted as criteria of confirmation. It is argued that they withstand the comparison with two qualitative theories of confirmation, Hempel’s satisfaction criterion and hypothetico-deductive confirmation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AL:

adaptive logic

CL:

classical logic

HD:

hypothetico-deductive model of confirmation

LLL:

lower limit logic

RC:

conditional rule

RU:

unconditional rule

SF:

standard format

References

  1. J. Norton: A little survey of induction. In: Scientific Evidence, ed. by P. Achinstein (John Hopkins Univ. Press, Baltimore 2005) pp. 9–34

    Google Scholar 

  2. D. Batens: The basic inductive schema, inductive truisms, and the research-guiding capacities of the logic of inductive generalization, Logique et Analyse 185-188, appeared 2005, 53–84 (2004)

    MATH  Google Scholar 

  3. D. Batens: On a logic of induction, Log. Philos. Sci. 4(1), 3–32 (2006)

    Google Scholar 

  4. D. Batens, L. Haesaert: On classical adaptive logics of induction, Logique et Analyse 173-175, appeared 2003, 255–290 (2001)

    MATH  Google Scholar 

  5. D. Batens: Logics for qualitative inductive generalization, Studia Logica 97, 61–80 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. C.G. Hempel: A purely syntactical definition of confirmation, J. Symb. Log. 8(4), 122–143 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Batens: A universal logic approach to adaptive logics, Logica Universalis 1, 221–242 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Batens: Tutorial on inconsistency-adaptive logics. In: New Directions in Paraconsistent Logic: 5th WCP, Kolkata, India, February 2014, Springer Proceedings in Mathematics and Statistics, Vol. 152, ed. by J.-Y. Beziau, M. Chakraborty, S. Dutta (Springer India, New Delhi 2015) pp. 3–38

    Chapter  Google Scholar 

  9. D. Batens: Towards a dialogic interpretation of dynamic proofs. In: Dialogues, Logics and Other Strange Things. Essays in Honour of Shahid Rahman, ed. by C. Dégremont, L. Keiff, H. Rückert (College Publications, London 2009) pp. 27–51

    Google Scholar 

  10. F. Van De Putte, C. Straßer: Adaptive logics: A parametric approach, Log. J. IGPL 22(6), 905–932 (2014)

    Article  MathSciNet  Google Scholar 

  11. K. Popper: The Logic of Scientific Discovery (Hutchinson, London 1959)

    MATH  Google Scholar 

  12. R. Carnap: Logical Foundations of Probability (Univ. of Chicago Press, Chicago 1950)

    MATH  Google Scholar 

  13. B. Fitelson: Inductive logic. In: Philosophy of Science: An Encyclopedia, ed. by J. Pfeifer, S. Sarkar (Routledge, London 2005) pp. 384–394

    Google Scholar 

  14. A. Hájek, N. Hall: Induction and probability. In: The Blackwell Guide to the Philosophy of Science, ed. by P. Machamer, M. Silberstein (Blackwell, Oxford 2002) pp. 149–172

    Google Scholar 

  15. R. Jeffrey: The Logic of Decision, 2nd edn. (Univ. of Chicago Press, Chicago 1990)

    Google Scholar 

  16. B. Skyrms: Choice and Chance. An Introduction to Inductive Logic, 3rd edn. (Wadsworth Publishing Company, Belmont 1986)

    Google Scholar 

  17. C.G. Hempel: Studies in the logic of confirmation II, Mind 54(214), 97–121 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Sprenger: A synthesis of hempelian and hypothetico-deductive confirmation, Erkenntnis 78(4), 727–738 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. B. Fitelson, J. Hawthorne: How bayesian confirmation theory handles the paradox of the ravens. In: The Place of Probability in Science, ed. by E. Eells, J. Fetzer (Springer, Heidelberg 2010) pp. 247–275

    Chapter  Google Scholar 

  20. J. Sprenger: Hypothetico-deductive confirmation, Philos. Compass 6/7, 497–508 (2011)

    Article  Google Scholar 

  21. N. Goodman: Fact, Fiction, and Forecast (Harvard Univ. Press, Cambridge 1955)

    Google Scholar 

  22. D. Stalker (Ed.): Grue! The New Riddle of Induction (Open Court, Chicago 1994)

    Google Scholar 

  23. C.G. Hempel: Studies in the logic of confirmation I, Mind 54(213), 1–26 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  24. J. Sprenger: Hempel and the paradoxes of confirmation. In: Handbook of the History of Logic, Vol. 10, ed. by D. Gabbay, S. Hartmann, J. Woods (Elsevier, Amsterdam 2011) pp. 231–260

    Google Scholar 

  25. V. Crupi: Confirmation. In: The Stanford Encyclopedia of Philosophy, Spring 2014 edn., ed. by Edward N. Zalta, http://plato.stanford.edu/archives/spr2014/entries/confirmation/ (2014)

  26. H. Putnam: Craig’s theorem, J. Philos. 62(10), 251–260 (1965)

    Article  Google Scholar 

  27. C. Glymour: Theory and Evidence (Princeton Univ. Press, Princeton 1980)

    Google Scholar 

  28. P. Duhem: The Aim and Structure of Physical Theory (Princeton Univ. Press, Princeton 1991), first published 1906

    MATH  Google Scholar 

  29. N.W.V. Quine: Two dogmas of empiricism, Philos. Rev. 60, 20–43 (1951)

    Article  MATH  Google Scholar 

  30. E. Sober: Testability, Proc. Addresses Am. Philos. Assoc. 73(2), 47–76 (1999)

    Article  Google Scholar 

  31. I. Scheffler: The Anatomy of Inquiry (Knopf, New York 1963)

    Google Scholar 

  32. K. Gemes: Hypothetico-deductivism, content, and the natural axiomatization of theories, Philos. Sci. 60(3), 477–487 (1993)

    Article  MathSciNet  Google Scholar 

  33. K. Gemes: Hypothetico-deductivism: The current state of play, Erkenntnis 49, 1–20 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. G. Schurz: Relevant deduction, Erkenntnis 35, 391–437 (1991)

    MathSciNet  Google Scholar 

  35. G. Schurz: Relevant deduction and hypothetico-deductivism: A reply to Gemes, Erkenntnis 41, 183–188 (1994)

    Article  Google Scholar 

  36. B. Chellas: Basic conditional logic, J. Philos. Log. 4, 133–153 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  37. M. Beirlaen, A. Aliseda: A conditional logic for abduction, Synthese 191(15), 3733–3758 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. G. Priest: An Introduction to Non-Classical Logic, 2nd edn. (Cambridge Univ. Press, Cambridge 2008)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The author is greatly indebted to Atocha Aliseda, Cristina Barés-Gómez, Diderik Batens, Matthieu Fontaine, Jan Sprenger, and Frederik Van De Putte for insightful and valuable comments on previous drafts of this chapter. Research for this article was supported by the Programa de Becas Posdoctorales de la Coordinación de Humanidades of the National Autonomous University of Mexico (UNAM), by the project Logics of discovery, heuristics and creativity in the sciences(PAPIIT, IN400514-3) granted by the UNAM, and by a Sofja Kovalevskaja award of the Alexander von Humboldt-Foundation, founded by the German Ministry for Education and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Beirlaen .

Editor information

Editors and Affiliations

Appendix: Blocking the Raven Paradox?

Appendix: Blocking the Raven Paradox?

If a formalism defined in terms of CL behaves overly permissive, a good strategy to remedy this problem is to add further criteria of validity or relevance. For instance, in order to avoid problems of irrelevant conjunctions and disjunctions, hypothetico-deductivists may impose further demands on HD confirmation [11.32, 11.33, 11.34, 11.35].

A similar strategy could be adopted with respect to I-confirmation and the raven paradox. In this appendix, an alternative adaptive logic of induction, IC, is defined, as is a corresponding criterion of confirmation which is slightly less permissive than the criteria from Sect. 11.4. IC makes use of a non-classical conditional resembling a number of conditionals originally defined in order to avoid the so-called paradoxes of material implication. First, an extension of CL is introduced, including this new conditional connective. Next, the adaptive logic IC is defined.

The new conditional, \(\rightarrow\), is fully characterized by the following rules and axiom schema’s

$$\begin{aligned}\displaystyle\frac{A,(A\rightarrow B)}{B}\;,&\displaystyle&\displaystyle(\mathrm{MP})\\ \displaystyle\frac{A\equiv B}{(A\rightarrow C)\equiv(B\rightarrow C)}\;,&\displaystyle&\displaystyle(\mathrm{RCEA})\\ \displaystyle\frac{A\equiv B}{(C\rightarrow A)\equiv(C\rightarrow B)}\;,&\displaystyle&\displaystyle(\mathrm{RCEC})\\ \displaystyle(A\rightarrow(B\wedge C))\equiv((A\rightarrow B)\wedge(A\rightarrow C))\;,&\displaystyle&\displaystyle(\mathrm{D}\wedge)\\ \displaystyle((A\vee B)\rightarrow C)\equiv((A\rightarrow C)\wedge(B\rightarrow C))\;,&\displaystyle&\displaystyle(\mathrm{D}\vee)\end{aligned}$$

((RCEA), (RCEC), and (D\(\wedge\)) fully characterize the conditional of Chellas’s logic CR from [11.36]. The latter was also used for capturing explanatory conditionals in [11.37]. See also [11.38, Chap. 5] for some closely related conditional logics, including an extension of Chellas’s systems that validates (MP).)

Let \(\mathbf{CL^{\rightarrow}}\) be the logic resulting from adding \(\rightarrow\) to the language of CL, and from adding (MP)-(D\(\vee\)) to the list of rules and axioms of CL. Note that the conditional \(\rightarrow\) is strictly stronger than \(\supset\)

$$(A\rightarrow B)\supset(A\supset B)\;.$$
(11.B57)

(By (MP), \(A,(A\rightarrow B)\vdash_{\mathbf{CL^{\rightarrow}}}B\). By the deduction theorem for \(\supset\), \(A\rightarrow B\vdash_{\mathbf{CL^{\rightarrow}}}A\supset B\). By the deduction theorem again, \(\vdash_{\mathbf{CL^{\rightarrow}}}(A\rightarrow B)\supset(A\supset B)\).)

In view of this bridging principle between both conditionals it is easily seen that counter-instances to a formula of the form \(\forall{x}(A(x)\supset B(x))\) form counter-instances to \(\forall{x}(A(x)\rightarrow B(x))\), and falsify the latter formula as well. For instance, if \(Pa\wedge\neg Qa\), then, by CL, \(\neg\forall{x}(Px\supset Qx)\), and, by (11.B57), \(\neg\forall{x}(Px\rightarrow Qx)\).

The adaptive logic IC is fully characterized by the lower limit logic \(\mathbf{CL^{\rightarrow}}\), the set of abnormalities

$$\begin{aligned}\displaystyle\Omega_{\mathbf{IC}}&\displaystyle=_{\text{df}}\{\exists(A_{1}\wedge\ldots\wedge A_{n}\wedge A_{0})\\ \displaystyle&\displaystyle\quad\wedge\neg\forall((A_{1}\wedge\ldots\wedge A_{n})\rightarrow A_{0})\mid\\ \displaystyle&\displaystyle\quad A_{0},A_{1},\ldots,A_{n}\in\mathcal{A}^{f1};n\geq 0\},\end{aligned}$$
(11.B58)

and the adaptive strategy reliability (ICr) or minimal abnormality (ICm). IC is defined within the SF. All rules and definitions for its proof theory are as for the other logics defined in this chapter, except that in the definition of RU and RC, CL is replaced with \(\mathbf{CL^{\rightarrow}}\).

The following proof illustrates how formulas are derived conditionally in IC

$$\begin{array}[]{lll}1&\neg Ra&\text{Prem}\\ &\emptyset&\\ 2&\neg Ba&\text{Prem}\\ &\emptyset&\\ 3&\forall{x}(\neg Bx\rightarrow\neg Rx)&1,2;\text{RC}\\ &\{\exists{x}(\neg Bx\wedge\neg Rx)\wedge\neg\forall{x}(\neg Bx\rightarrow\neg Rx)\}&\\ \end{array}$$

Given only the premises \(\neg Ra\) and \(\neg Ba\), there is no possible extension of this proof in which line 3 gets marked. Hence

$$\neg Ra,\neg Ba\vdash_{\mathbf{IC}}\forall{x}(\neg Bx\rightarrow\neg Rx)\;.$$
(11.B59)

However, contraposition is invalid for the new conditional \(\rightarrow\), hence we cannot derive the raven hypothesis from the formula derived at line 3. Note also that, in view of (11.B60), we cannot use the conditional rule RC to derive \(\forall{x}(Rx\rightarrow Bx)\) on the condition \(\{\exists{x}(Rx\wedge Bx)\wedge\neg\forall{x}(Rx\rightarrow Bx)\}\) in an IC-proof, since

$$\begin{aligned}\displaystyle&\displaystyle\neg Ra,\neg Ba\not\vdash_{\mathbf{CL^{\rightarrow}}}\forall{x}(Rx\rightarrow Bx)\\ \displaystyle&\displaystyle\quad\vee(\exists{x}(Rx\wedge Bx)\wedge\neg\forall{x}(Rx\rightarrow Bx))\;.\end{aligned}$$
(11.B60)

Therefore

$$\neg Ra,\neg Ba\not\vdash_{\mathbf{IC}}\forall{x}(Rx\rightarrow Bx)\;.$$
(11.B61)

Thus, if conditional statements of the form for all x, if A(x) then B(x) are taken to be IC-confirmed only if the conditional in question is an arrow (\(\rightarrow\)) instead of a material implication, then the raven paradox, in its original formulation, is blocked.

An additional property of IC is that strengthening the antecedent fails for \(\rightarrow\). In Sect. 11.3, for instance, we saw that

$$Pa\vdash_{\mathbf{G}}\forall{x}(Qx\supset Px)\;.$$
(11.B62)

In IC, (11.B62) still holds for the material implication, but not for the new conditional. In an IC-proof from Pa we can still derive \(\forall{x}Px\) on the condition \(\{\exists{x}Px\wedge\exists{x}\neg Px\}\), and since IC extends CL it still follows that \(\forall{x}(Px\supset Qx)\)

$$Pa \vdash_{\mathbf{IC}}\forall{x}Px\;,$$
(11.B63)
$$Pa \vdash_{\mathbf{IC}}\forall{x}(Qx\supset Px)\;.$$
(11.B64)

However, since \(\forall{x}Px\not\vdash_{\mathbf{CL^{\rightarrow}}}\forall{x}(Qx\rightarrow Px)\), and since we do not have any further means to conditionally derive the formula \(\forall{x}(Qx\rightarrow Px)\) in an IC-proof

$$Pa\not\vdash_{\mathbf{IC}}\forall{x}(Qx\rightarrow Px)\;.$$
(11.B65)

Originally, the logics in the G-family were constructed as logics requiring a positive instance before we are allowed to apply RC. This is reflected in the definition of the set of G-abnormalities. In order to derive a formula like \(\forall{x}(Px\supset Qx)\) on its corresponding condition, a positive instance, e. g., \(Pa\wedge Qa\), is needed. Examples like (11.36) and (11.B62) show, however, that such a positive instance is not always required in order to G-derive a generalization. The logic IC, it seems, does much better in this respect. However, it still does not fully live up to the requirement for a positive instance before generalizing, as the following IC-proof from \(\Gamma_{9}=\{\neg Ra\wedge\neg Ba,Rb,Bc\}\) illustrates (where \(A_{0},A_{1},\ldots,A_{n}\in\mathcal{A}^{f1}\), \({\dagger}((A_{1}\wedge\ldots\wedge A_{n})\rightarrow A_{0})\) abbreviates \(\exists(A_{1}\wedge\ldots\wedge A_{n}\wedge A_{0})\wedge\neg\forall((A_{1}\wedge\ldots\wedge A_{n})\rightarrow A_{0})\)).

$$\begin{array}[]{ll@{\kern 30mm}l}1&\neg Ra\wedge\neg Ba\kern 85.358268pt&\text{Prem}\\ &\hskip 17.071654pt\emptyset\kern 85.358268pt&\\ 2&Rb\kern 85.358268pt&\text{Prem}\\ &\hskip 17.071654pt\emptyset\kern 85.358268pt&\\ 3&Bc\kern 85.358268pt&\text{Prem}\\ &\hskip 17.071654pt\emptyset\kern 85.358268pt&\\ \end{array}$$
$$\begin{array}[]{lll}4&\forall{x}(\neg Bx\rightarrow\neg Rx)&1;\text{RC}\\ &\hskip 17.071654pt\{{\dagger}(\neg Bx\rightarrow\neg Rx)\}&\\ 5&Bb&2,4;\text{RU}\\ &\hskip 17.071654pt\{{\dagger}(\neg Bx\rightarrow\neg Rx)\}&\\ 6&\forall{x}(Rx\rightarrow Bx)&2,5;\text{RC}\\ &\hskip 17.071654pt\{{\dagger}(Rx\rightarrow Bx),{\dagger}(\neg Bx\rightarrow\neg Rx)\}&\\ \end{array}$$

The key step in this proof is the derivation of Bb at line 5, which together with Rb provides us with a positive instance of the raven hypothesis. Bb is derivable from lines 2 and 4 in view of CL and (11.B57). Except for the formulas \(\exists{x}Rx\wedge\exists{x}\neg Rx\) and \(\exists{x}Bx\wedge\exists{x}\neg Bx\), no minimal Dab-formulas are \(\mathbf{CL^{\rightarrow}}\)-derivable from Γ9. Therefore

$$\Gamma_{9}\vdash_{\mathbf{IC}}\forall{x}(Rx\rightarrow Bx)\;.$$
(11.B66)

As (11.B61) illustrates the logic IC avoids the raven paradox in its original formulation. A possible drawback of IC is that it does not fully meet the demand for a positive instance when confirming a hypothesis (Sect. 11.4.3). It is left open whether it is possible and desirable to further extend IC so as to fully meet this demand.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beirlaen, M. (2017). Qualitative Inductive Generalization and Confirmation. In: Magnani, L., Bertolotti, T. (eds) Springer Handbook of Model-Based Science. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-30526-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30526-4_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30525-7

  • Online ISBN: 978-3-319-30526-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics