Predicting Future Effects of Multiple Drivers of Extinction Risk in Peru’s Endemic Primate Fauna

  • Sam Shanee
Part of the Developments in Primatology: Progress and Prospects book series (DIPR)


Multiple anthropogenic drivers of extinction risk in primates are increasing. The expansion of urban areas, road networks, and agricultural frontiers are threatening primates through habitat loss, fragmentation, and increased incidences of hunting. Man-made climate change is affecting habitat quality and availability, particularly in rare ecosystems. Three of Peru’s endemic primate species, the yellow-tailed woolly monkey (Lagothrix flavicauda), the San Martin titi monkey (Plecturocebus oenanthe Sensu, Byrne H, Rylands AB, Carneiro JC, Alfaro JWL, Bertuol F, da Silva MNF, Messias M et al. (2016) Phylogenetic relationships of the New World titi monkeys (Callicebus): first appraisal of taxonomy based on molecular evidence. Frontiers in Zoology 13:1–26) and the Peruvian night monkey (Aotus miconax), have naturally restricted distributions in the foothills of the country’s northeastern Andes. Montane forest habitat in this area not only suffers from the highest rates of deforestation in the country but is also predicted to be among the most at risk areas from the effects of man-made climate change. Using data from extensive published and unpublished field surveys, this study modeled the species’ historical, current, and future distributions. To best estimate the effects of multiple drivers of extinction risk, I used models of future climate change scenarios coupled with predications of expanding human settlement and hunting over multiple timescales. Results of these models predict a reduction in niche availability for A. miconax and L. flavicauda and an increase in niche availability for P. oenanthe. In all cases predicted habitat loss was less than in previous studies. However, when taking into account anthropogenic disturbance, habitat loss is much more severe. I suggest that predictive modeling is a useful tool for conservation, but should always use the most up-to-date data and results should be interpreted with caution based on expert knowledge of the species and area. Future climate change is predicted to increase threats to many species but deforestation and hunting will remain the major threats for many primates.


Species distribution model Maximum entropy Aotus miconax Callicebus oenanthe Lagothrix flavicauda Climate change Agricultural frontier 



I wish to thank Noga Shanee, Nestor Allgas, Alejandra Zamora, and everyone at Neotropical Primate Conservation for their help in preparing this study. Also Noe Rojas, Ana Peralta, and Fernando Guerra for their help in the field as well as Julio Tello, Antonio Boveda, and Jan Vermeer from Proyecto Mono Tocon, for their previous field studies without which modeling would not have been possible. Data used for this work was gathered, thanks to funding from Neotropical Primate Conservation and from Community Conservation, Primate Conservation Inc, Margot Marsh Biodiversity Foundation, National Geographic Society, International Primate Protection League, Primate Society of Great Britain, and American Society of Primatologists.


  1. Alfaro, J. W. L., Boubli, J. P., Olson, L. E., Di Fiore, A., Wilson, B., Gutiérrez-Espeleta, G. A., et al. (2012a). Explosive Pleistocene range expansion leads to widespread Amazonian sympatry between robust and gracile capuchin monkeys. Journal of Biogeography, 39(2), 272–288.CrossRefGoogle Scholar
  2. Alfaro, J. W. L., Silva, J. D. E., & Rylands, A. B. (2012b). How different are robust and gracile capuchin monkeys? An argument for the use of Sapajus and Cebus. American Journal of Primatology, 74(4), 273–286.PubMedCrossRefGoogle Scholar
  3. Allgas, N., Shanee, S., Peralta, A., & Shanee, N. (2014). Yellow-tailed woolly monkey (Oreonax flavicauda: Humboldt 1812) altitudinal range extension, Uchiza, Peru. Neotropical Primates, 21(2), 207–207.CrossRefGoogle Scholar
  4. Anderson, R. P., & Raza, A. (2010). The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: Preliminary tests with montane rodents (genus Nephelomys) in Venezuela. Journal of Biogeography, 37, 1378–1393.CrossRefGoogle Scholar
  5. Andrén, H. (1994). Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: A review. Oikos, 71(3), 355–366.CrossRefGoogle Scholar
  6. Aquino, R., & Encarnación, F. (1994). Los primates del Peru. Primate Report, 40, 1–130.Google Scholar
  7. Ayres, J. M., & Clutton-Brock, T. H. (1992). River boundaries and species range size in Amazonian primates. The American Naturalist, 140(3), 531–537.PubMedCrossRefGoogle Scholar
  8. Bergl, R. A., Bradley, B. J., Nsubuga, A., & Vigilant, L. (2008). Effects of habitat fragmentation, population size and demographic history on genetic diversity: The cross river gorilla in a comparative context. American Journal of Primatology, 70(9), 848–859.PubMedCrossRefGoogle Scholar
  9. Bertin, R. I. (2008). Plant phenology and distribution in relation to recent climate change. The Journal of the Torrey Botanical Society, 135(1), 126–146.CrossRefGoogle Scholar
  10. Bocedi, G., Palmer, S. C. F., Pe’er, G., Heikkinen, R. K., Matsinos, Y. G., Watts, K., et al. (2014). RangeShifter: A platform for modelling spatial eco-evolutionary dynamics and species’ responses to environmental changes. Methods in Ecology and Evolution, 5(4), 388–396.CrossRefGoogle Scholar
  11. Bonan, G. B. (2013). Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320(5882), 1444–1449.CrossRefGoogle Scholar
  12. Boria, R. A., Olson, L. E., Goodman, S. M., & Anderson, R. P. (2014). Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling, 275, 73–77.CrossRefGoogle Scholar
  13. Boubli, J. P., Rylands, A. B., Farias, I. P., Alfaro, M. E., & Alfaro, J. L. (2012). Cebus phylogenetic relationships: A preliminary reassessment of the diversity of the untufted capuchin monkeys. American Journal of Primatology, 74(4), 381–393.PubMedCrossRefGoogle Scholar
  14. Bóveda-Penalba, A., Vermeer, J., Rodrigo, F., & Guerra-Vásquez, F. (2009). Preliminary report on the distribution of (Callicebus oenanthe) on the eastern feet of the Andes. International Journal of Primatology, 30(3), 467–480.CrossRefGoogle Scholar
  15. Brenneman, R. A., Johnson, S. E., Bailey, C. A., Ingraldi, C., Delmore, K. E., Wyman, T. M., et al. (2012). Population genetics and abundance of the endangered grey-headed lemur Eulemur cinereiceps in south-east Madagascar: Assessing risks for fragmented and continuous populations. Oryx, 46(2), 298–307.CrossRefGoogle Scholar
  16. Brown, J. L. (2014). SDMtoolbox: A python-based GIS toolkit for landscape genetic biogeographic and species distribution model analyses. Methods in Ecology and Evolution, 5(7), 694–700.CrossRefGoogle Scholar
  17. Bubb, P., May, I., Miles, L., & Sayer, J. (2004). Cloud forest agenda. Cambridge, England: United Nations Environment Programme—World Conservation Monitoring Centre.Google Scholar
  18. Buckingham, F., & Shanee, S. (2009). Conservation priorities for the Peruvian yellow-tailed woolly monkey (Oreonax flavicauda): A GIS risk assessment and gap analysis. Primate Conservation, 24(1), 65–71.Google Scholar
  19. Campbell, N. (2011). The Peruvian night monkey, Aotus miconax, a comparative study of occupancy between Cabeza del Toro and Cordillera de Colan. Oxford, England: Oxford Brookes University.Google Scholar
  20. Cantú-Salazar, L., Orme, C. D., Rasmussen, P., Blackburn, T., & Gaston, K. (2013). The performance of the global protected area system in capturing vertebrate geographic ranges. Biodiversity and Conservation, 22(4), 1033–1047.CrossRefGoogle Scholar
  21. Cardillo, M., Mace, G. M., Jones, K. E., Bielby, J., Bininda-Emonds, O. R. P., Sechrest, W., et al. (2005). Multiple causes of high extinction risk in large mammal species. Science, 309(5738), 1239–1241.PubMedCrossRefGoogle Scholar
  22. Cayuela, L., Benayas, J. M. R., & Echeverría, C. (2006). Clearance and fragmentation of tropical montane forests in the highlands of Chiapas, Mexico (1975–2000). Forest Ecology and Management, 226(1–3), 208–218.CrossRefGoogle Scholar
  23. Chan, L. M., Brown, J. L., & Yoder, A. D. (2011). Integrating statistical genetic and geospatial methods brings new power to phylogeography. Molecular Phylogenetics and Evolution, 59(2), 523–537.PubMedCrossRefGoogle Scholar
  24. Chapman, C. A., Speirs, M. L., Gillespie, T. R., Holland, T., & Austad, K. M. (2006). Life on the edge: Gastrointestinal parasites from the forest edge and interior primate groups. American Journal of Primatology, 68(4), 397–409.PubMedCrossRefGoogle Scholar
  25. de Souza Muñoz, M. E., De Giovanni, R., de Siqueira, M. F., Sutton, T., Brewer, P., Pereira, R. S., et al. (2011). OpenModeller: A generic approach to species’ potential distribution modelling. GeoInformatica, 15(1), 111–135.CrossRefGoogle Scholar
  26. deLuycker, A. M. (2007). Notes on the yellow-tailed woolly monkey (Oreonax flavicauda) and its status in the protected forest of Alto Mayo, Northern Peru. Primate Conservation, 22(1), 41–47.CrossRefGoogle Scholar
  27. deLuycker, A. M. (2007). The ecology and behavior of the Rio Mayo titi monkey (Callicabus oenanthe) in the Alto Mayo, Northern Peru. Unpublished Ph.D. dissertation, Washington University in St Louis.Google Scholar
  28. Dore, M. H. I. (2005). Climate change and changes in global precipitation patterns: What do we know? Environment International, 31(8), 1167–1181.PubMedCrossRefGoogle Scholar
  29. Dourojeanni, M. (1989). Environmental impact of coca cultivation and cocaine production in the amazon region of Peru. In F. R. Len & R. Castro de la Mata (Eds.), Pasta bisica de cocaina: Un estudio multidisciplinario (pp. 281–300). Lima, Peru: CEDRO.Google Scholar
  30. Dreyfus, P. G. (1999). When all the evils come together. Journal of Contemporary Criminal Justice, 15(4), 370–396.CrossRefGoogle Scholar
  31. Durán, A. P., Rauch, J., & Gaston, K. J. (2013). Global spatial coincidence between protected areas and metal mining activities. Biological Conservation, 160, 272–278.CrossRefGoogle Scholar
  32. Elith, J., & Graham, C. H. (2009). Do they? How do they? Why do they differ? On finding reasons for differing performances of species distribution models. Ecography, 32(1), 66–77.CrossRefGoogle Scholar
  33. Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., et al. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129–151.CrossRefGoogle Scholar
  34. Ellenbogen, G. G. (1999). The shining path: A history of the millenarian war in Peru. Chapell Hill: University of North Carolina Press.Google Scholar
  35. Estrada, A., & Coates-Estrada, R. (1996). Tropical rain forest fragmentation and wild populations of primates at Los Tuxtlas, Mexico. International Journal of Primatology, 17(5), 759–783.CrossRefGoogle Scholar
  36. Fahrig, L. (2003). Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34, 487–515.CrossRefGoogle Scholar
  37. Fearnside, P. M. (1983). Land-use trends in the Brazilian Amazon region as factors in accelerating deforestation. Environmental Conservation, 10(02), 141–148.CrossRefGoogle Scholar
  38. Feeley, K. J., & Silman, M. R. (2010). Land-use and climate change effects on population size and extinction risk of Andean plants. Global Change Biology, 16(12), 3215–3222.CrossRefGoogle Scholar
  39. Fjeldså, J., Álvarez, M. D., Lazcano, J. M., & León, B. (2005). Illicit crops and armed conflict as constraints on biodiversity conservation in the Andes region. AMBIO, 34(3), 205–211.PubMedCrossRefGoogle Scholar
  40. Fjeldså, J., Lambin, E., & Mertens, B. (1999). Correlation between endemism and local ecoclimatic stability documented by comparing Andean bird distributions and remotely sensed land surface data. Ecography, 22(1), 63–78.CrossRefGoogle Scholar
  41. Foster, P. (2001). The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Science Reviews, 55(1–2), 73–106.CrossRefGoogle Scholar
  42. Gálvez, N., Hernández, F., Laker, J., Gilabert, H., Petitpas, R., Bonacic, C., et al. (2013). Forest cover outside protected areas plays an important role in the conservation of the Vulnerable guiña Leopardus guigna. Oryx, 47(02), 251–258.CrossRefGoogle Scholar
  43. Garland, E. B. (1995). The social and economic causes of deforestation in the Peruvian Amazon basin: Natives and colonists. In M. Painter & W. H. Durham (Eds.), The social causes of environmental destruction in Latin America (pp. 217–246). Ann Arbor: University of Michigan Press.Google Scholar
  44. Geldmann, J., Barnes, M., Coad, L., Craigie, I. D., Hockings, M., & Burgess, N. D. (2013). Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biological Conservation, 161, 230–238.CrossRefGoogle Scholar
  45. Gillespie, T. R., Chapman, C. A., & Greiner, E. C. (2005). Effects of logging on gastrointestinal parasite infections and infection risk in African primates. Journal of Applied Ecology, 42(4), 699–707.CrossRefGoogle Scholar
  46. Goldberg, T. L., Gillespie, T. R., Rwego, I. B., Estoff, E. L., & Chapman, C. A. (2008). Forest fragmentation as cause of bacterial transmission among nonhuman primates, humans, and livestock, Uganda. Emerging Infectious Diseases, 14(9), 1375–1382.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Goodchild, M. F., Steyaert, L. T., Parks, B. O., & Johnston, C. (1996). GIS and environmental modeling: Progress and research issues. New York: Wiley.Google Scholar
  48. Graham, C. H., Elith, J., Hijmans, R. J., Guisan, A., Peterson, A. T., Loiselle, B. A., et al. (2008). The influence of spatial errors in species occurrence data used in distribution models. Journal of Applied Ecology, 45(1), 239–247.CrossRefGoogle Scholar
  49. Guisan, A., & Thuiller, W. (2005). Predicting species distribution: Offering more than simple habitat models. Ecology Letters, 8(9), 993–1009.CrossRefGoogle Scholar
  50. Guisan, A., Zimmermann, N. E., Elith, J., Graham, C. H., Phillips, S., & Peterson, A. T. (2007). What matters for predicting the occurrences of trees: Techniques, data, or species’ characteristics? Ecological Monographs, 77(4), 615–630.CrossRefGoogle Scholar
  51. Guo, Q., & Liu, Y. (2010). ModEco: An integrated software package for ecological niche modeling. Ecography, 33(4), 637–642.CrossRefGoogle Scholar
  52. Hall, J., Burgess, N. D., Lovett, J., Mbilinyi, B., & Gereau, R. E. (2009). Conservation implications of deforestation across an elevational gradient in the Eastern Arc Mountains, Tanzania. Biological Conservation, 142(11), 2510–2521.CrossRefGoogle Scholar
  53. Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., et al. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342(6160), 850–853.PubMedCrossRefGoogle Scholar
  54. Herzog, S. K. (2011). Climate change and biodiversity in the tropical Andes. São José dos Campos, Brazil: Inter-American Institute for Global Change Research.Google Scholar
  55. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965–1978.CrossRefGoogle Scholar
  56. Hurtt, G. C., Chini, L. P., Frolking, S., Betts, R. A., Feddema, J., Fischer, G., et al. (2011). Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change, 109(1-2), 117–161.CrossRefGoogle Scholar
  57. INEI. (2008). Instituto Nacional de Estadistica e Informatica (INEI). Retrieved November 20, 2009, from
  58. INRENA. (2005). Mapa de deforestacion de la Amazonia Peruana—2000. Lima, Peru: Instituto Nacional de recursos Naturales.Google Scholar
  59. IUCN. (2013). IUCN Red List of Threatened Species. Retrieved March 5, 2014, from
  60. Jerozolimski, A., & Peres, C. A. (2003). Bringing home the biggest bacon: A cross-site analysis of the structure of hunter-kill profiles in neotropical forests. Biological Conservation, 111(3), 415–425.CrossRefGoogle Scholar
  61. Kent, R. B. (1993). Geographical dimensions of the shining path insurgency in Peru. Geographical Review, 83(4), 441–454.CrossRefGoogle Scholar
  62. Krausmann, F., Erb, K.-H., Gingrich, S., Haberl, H., Bondeau, A., Gaube, V., et al. (2013). Global human appropriation of net primary production doubled in the 20th century. Proceedings of the National Academy of Sciences, 110(25), 10324–10329.CrossRefGoogle Scholar
  63. Kriticos, D. J., Webber, B. L., Leriche, A., Ota, N., Macadam, I., Bathols, J., et al. (2012). CliMond: Global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods in Ecology and Evolution, 3(1), 53–64.CrossRefGoogle Scholar
  64. Laurance, W. F., & Williamson, G. B. (2001). Positive feedbacks among forest fragmentation, drought, and climate change in the Amazon. Conservation Biology, 15(6), 1529–1535.CrossRefGoogle Scholar
  65. Lenoir, J., Gégout, J. C., Marquet, P. A., de Ruffray, P., & Brisse, H. (2008). A significant upward shift in plant species optimum elevation during the 20th century. Science, 320(5884), 1768–1771.PubMedCrossRefGoogle Scholar
  66. Leo Luna, M. (1987). Primate conservation in Peru: A case study of the yellow-tailed woolly monkey. Primate Conservation, 8(1), 122–123.Google Scholar
  67. Leroux, S. J., & Kerr, J. T. (2013). Land development in and around protected areas at the Wilderness Frontier. Conservation Biology, 27(1), 166–176.PubMedCrossRefGoogle Scholar
  68. Lewis, O. T. (2006). Climate change, species–area curves and the extinction crisis. Philosophical Transactions of the Royal Society, B: Biological Sciences, 361(1465), 163–171.CrossRefGoogle Scholar
  69. Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. F., & Nepstad, D. (2011). The 2010 Amazon drought. Science, 331(6017), 554.PubMedCrossRefGoogle Scholar
  70. Marsh, L. K., Chapman, C. A., Arroyo-Rodríguez, V., Cobden, A. K., Dunn, J. C., Gabriel, D., et al. (2013). Primates in fragments 10 years later: Once and future goals. In L. K. Marsh & C. A. Chapman (Eds.), Primates in fragments (pp. 503–523). New York: Springer.CrossRefGoogle Scholar
  71. Matauschek, C., Roos, C., & Heymann, E. W. (2011). Mitochondrial phylogeny of tamarins (Saguinus, Hoffmannsegg 1807) with taxonomic and biogeographic implications for the S. nigricollis species group. American Journal of Physical Anthropology, 144(4), 564–574.PubMedCrossRefGoogle Scholar
  72. McCarty, J. P. (2001). Review: Ecological consequences of recent climate change. Conservation Biology, 15(2), 320–331.CrossRefGoogle Scholar
  73. Merckx, B., Steyaert, M., Vanreusel, A., Vincx, M., & Vananerbeke, J. (2011). Null models reveal preferential sampling, spatial autocorrelation and overfitting in habitat suitability modelling. Ecological Modelling, 222(3), 588–597.CrossRefGoogle Scholar
  74. Michalski, F., & Peres, C. A. (2005). Anthropogenic determinants of primate and carnivore local extinctions in a fragmented forest landscape of southern Amazonia. Biological Conservation, 124(3), 383–396.CrossRefGoogle Scholar
  75. Morales, E. (1986). Coca and cocaine economy and social change in the Andes of Peru. Economic Development and Cultural Change, 35(1), 143–161.CrossRefGoogle Scholar
  76. Moss, R. H., Edmonds, J. A., Hibbard, K. A., Manning, M. R., Rose, S. K., van Vuuren, D. P., et al. (2010). The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747–756.PubMedCrossRefGoogle Scholar
  77. Myers, N. (2003). Biodiversity hotspots revisited. BioScience, 53(10), 916–917.CrossRefGoogle Scholar
  78. Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853–858.PubMedCrossRefGoogle Scholar
  79. Newbold, T., Hudson, L. N., Phillips, H. R. P., Hill, S. L. L., Contu, S., Lysenko, I., et al. (2014). A global model of the response of tropical and sub-tropical forest biodiversity to anthropogenic pressures. Proceedings of the Royal Society of London. Series B, 281(1805), 1–10.Google Scholar
  80. Pacheco, V., Cadenillas, R., Salas, E., Tello, C., & Zeballos, H. (2009). Diversity and endemism of Peruvian mammals. Revista Peruana de Biología, 16(1), 5–32.Google Scholar
  81. Peres, C. A. (2001). Synergistic effects of subsistence hunting and habitat fragmentation on Amazonian forest vertebrates. Conservation Biology, 15(6), 1490–1505.CrossRefGoogle Scholar
  82. Peres, C. A., Gardner, T. A., Barlow, J., Zuanon, J., Michalski, F., Lees, A. C., et al. (2010). Biodiversity conservation in human-modified Amazonian forest landscapes. Biological Conservation, 143(10), 2314–2327.CrossRefGoogle Scholar
  83. Perz, S. G., Aramburú, C., & Bremner, J. (2005). Population, land use and deforestation in the Pan Amazon basin: A comparison of Brazil, Bolivia, Colombia, Ecuador, Perú and Venezuela. Environment, Development and Sustainability, 7(1), 23–49.CrossRefGoogle Scholar
  84. Peterson, A. T., Papeş, M., & Eaton, M. (2007). Transferability and model evaluation in ecological niche modeling: A comparison of GARP and Maxent. Ecography, 30(4), 550–560.CrossRefGoogle Scholar
  85. Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259.CrossRefGoogle Scholar
  86. Phillips, S. J., Dudík, M., Elith, J., Graham, C. H., Lehmann, A., Leathwick, J., et al. (2009). Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecological Applications, 19, 181–197.PubMedCrossRefGoogle Scholar
  87. Pielke, R. A., Marland, G., Betts, R. A., Chase, T. N., Eastman, J. L., Niles, J. O., et al. (2002). The influence of land-use change and landscape dynamics on the climate system: Relevance to climate-change policy beyond the radiative effect of greenhouse gases. Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 360(1797), 1705–1719.CrossRefGoogle Scholar
  88. Porter-Bolland, L., Ellis, E. A., Guariguata, M. R., Ruiz-Mallén, I., Negrete-Yankelevich, S., & Reyes-García, V. (2012). Community managed forests and forest protected areas: An assessment of their conservation effectiveness across the tropics. Forest Ecology and Management, 268, 6–17.CrossRefGoogle Scholar
  89. PROCLIM/CONAM. (2005). Informe del proyecto proclim—Conam. Lima, Peru: INRENA.Google Scholar
  90. Purvis, A., Gittleman, J. L., Cowlishaw, G., & Mace, G. M. (2000a). Predicting extinction risk in declining species. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267(1456), 1947–1952.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Purvis, A., Jones, K. E., & Mace, G. M. (2000b). Extinction. BioEssays, 22(12), 1123–1133.PubMedCrossRefGoogle Scholar
  92. Radosavljevic, A., & Anderson, R. P. (2014). Making better Maxent models of species distributions: Complexity, overfitting, and evaluation. Journal of Biogeography, 41, 629–643.CrossRefGoogle Scholar
  93. Raper, S. (2012). Climate modelling: IPCC gazes into the future. Nature Climate Change, 2(4), 232–233.CrossRefGoogle Scholar
  94. Reategui, F., & Martinez, P. (2007). Feorestal. Zonificacion ecologica economica del departamento de Amazonas. Lima, Peru: Instituto de Investigaciones de la Amazonia Peruana (IIAP).Google Scholar
  95. Robles Gil, P., Seligmann, P. A., Ford, H., & Mittermeier, R. A. (2004). Hotspots revisited. Mexico City, Mexico: CEMEX.Google Scholar
  96. Rodrigues, A. S. L., Andelman, S. J., Bakarr, M. I., Boitani, L., Brooks, T. M., Cowling, R. M., et al. (2003). Global gap analysis: Towards a representative network of protected areas. Advances in Applied Biodiversity Science, 5, 100.Google Scholar
  97. Rogelj, J., Meinshausen, M., & Knutti, R. (2012). Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nature Climate Change, 2(4), 248–253.CrossRefGoogle Scholar
  98. Rowe, N., & Myers, M. (2012). All the worlds' primates. Retrieved May 28, 2012. from
  99. Sanchez-Cuervo, A. M., & Aide, T. M. (2013). Identifying hotspots of deforestation and reforestation in Colombia (2001–2010): Implications for protected areas. Ecosphere, 4(11), 143.CrossRefGoogle Scholar
  100. Sanchez-Larranega, J., & Shanee, S. (2012). Parásitos gastrointestinales en el mono choro cola amarilla (Oreonax flavicauda) y el mono nocturno Andino (Aotus miconax) en Amazonas, Perú. Neotropical Primates, 19(1), 38–41.CrossRefGoogle Scholar
  101. Schjellerup, I. (2000). La Morada. A case study on the impact of human pressure on the environment in the Ceja de Selva, northeastern Peru. AMBIO, 29, 451–454.CrossRefGoogle Scholar
  102. Seiferling, I. S., Proulx, R., Peres‐Neto, P. R., Fahrig, L., & Messier, C. (2012). Measuring protected-area isolation and correlations of isolation with land-use intensity and protection status [Medición del Aislamiento de Áreas Protegidas y Correlaciones del Aislamiento con la Intensidad de Uso del Suelo y el Estatus de Protección]. Conservation Biology, 26(4), 610–618.PubMedCrossRefGoogle Scholar
  103. Shanee, S. (2011). Distribution survey and threat assessment of the yellow-tailed woolly monkey (Oreonax flavicauda, Humboldt 1812), Northeastern Peru. International Journal of Primatology, 32(3), 691–707.CrossRefGoogle Scholar
  104. Shanee, N. (2012a). The dynamics of threats and conservation efforts for the tropical Andes hotspot in Amazonas and San Martin, Peru. Canterbury, England: Kent University.Google Scholar
  105. Shanee, N. (2012b). Trends in local wildlife hunting, trade and control in the Tropical Andes Hotspot, Northeastern Peru. Endangered Species Research, 19(2), 177–186.CrossRefGoogle Scholar
  106. Shanee, S. (2013). Conservation and ecology of Andean primates in Peru. Unpublished Ph.D. dissertation, Oxford Brookes University, Oxford.Google Scholar
  107. Shanee, S., Allgas, N., & Shanee, N. (2013a). Preliminary observations on the behavior and ecology of the Peruvian night monkey (Aotus miconax: Primates) in a remnant cloud forest patch, north eastern Peru. Tropical Conservation Science, 6(1), 138–148.Google Scholar
  108. Shanee, S., Allgas, N., Shanee, N., & Campbell, N. (2015). Distribution, ecological niche modelling and conservation assessment of the Peruvian Night Monkey (Mammakia: Primates: Aotidae: Aotus miconax Thomas, 1927) in Northeastern Peru, with notes on the distributions of Aotus spp. Journal of Threatened Taxa, 7(3), 6947–6964.CrossRefGoogle Scholar
  109. Shanee, S., Shanee, N., & Allgas-Marchena, N. (2013b). Primate surveys in the Maranon-Huallaga landscape, Northern Peru with notes on conservation. Primate Conservation, 27, 3–11.CrossRefGoogle Scholar
  110. Shanee, S., Shanee, N., Campbell, N., & Allgas, N. (2013c). Biogeography and conservation of Andean primates in Peru. In N. B. Grow, S. Gursky-Doyen, & A. Krzton (Eds.), High altitude primates (pp. 63–83). New York: Springer.Google Scholar
  111. Shanee, N., Shanee, S., & Horwich, R. H. (2014). Effectiveness of locally run conservation initiatives in north-east Peru. Oryx, 49, 239–247.Google Scholar
  112. Shanee, S., Tello-Alvarado, J. C., Vermeer, J., & Boveda-Penalba, A. J. (2011). GIS risk assessment and GAP analysis for the Andean titi monkey (Callicebus oenanthe). Primate Conservation, 26(1), 17–23.CrossRefGoogle Scholar
  113. Shcheglovitova, M., & Anderson, R. P. (2013). Estimating optional complexity for ecological niche models: A jackknife approach for species with small sample sizes. Ecological Modelling, 269, 9–17.CrossRefGoogle Scholar
  114. Skidmore, A. (2004). Environmental modelling with GIS and remote sensing. London: Taylor and Francis.Google Scholar
  115. Still, C. J., Foster, P. N., & Schneider, S. H. (1999). Simulating the effects of climate change on tropical montane cloud forests. Nature, 398(6728), 608–610.CrossRefGoogle Scholar
  116. Suárez-Seoane, S., Virgós, E., Terroba, O., Pardavila, X., & Barea-Azcón, J. M. (2014). Scaling of species distribution models across spatial resolutions and extents along a biogeographic gradient. The case of the Iberian mole Talpa occidentalis. Ecography, 37(3), 279–292.CrossRefGoogle Scholar
  117. Swenson, J. J., Young, B. E., Beck, S., Comer, P., Cordova, J. H., Dyson, J., et al. (2012). Plant and animal endemism in the eastern Andean slope: Challenges to conservation. BMC Ecology, 12(1), 1–19.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., et al. (2004). Extinction risk from climate change. Nature, 427(6970), 145–148.PubMedCrossRefGoogle Scholar
  119. Thuiller, W., Lafourcade, B., Engler, R., & Araujo, M. B. (2009). BIOMOD—A platform for ensemble forecasting of species distributions. Ecography, 32, 369–373.CrossRefGoogle Scholar
  120. Tilman, D., Reich, P. B., Knops, J., Wedin, D., Mielke, T., & Lehman, C. (2001). Diversity and productivity in a long-term grassland experiment. Science, 294(5543), 843–845.PubMedCrossRefGoogle Scholar
  121. Vale, C. G., Tarroso, P., & Brito, J. C. (2014). Predicting species distribution at range margins: Testing the effects of study area extent, resolution and threshold selection in the Sahara–Sahel transition zone. Diversity and Distributions, 20(1), 20–33.CrossRefGoogle Scholar
  122. van Aalst, M. K. (2006). The impacts of climate change on the risk of natural disasters. Disasters, 30(1), 5–18.PubMedCrossRefGoogle Scholar
  123. Veech, J. A., & Crist, T. O. (2007). Habitat and climate heterogeneity maintain beta-diversity of birds among landscapes within ecoregions. Global Ecology and Biogeography, 16(5), 650–656.CrossRefGoogle Scholar
  124. Veloz, S. D. (2009). Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. Journal of Biogeography, 36(12), 2290–2299.CrossRefGoogle Scholar
  125. Vermeer, J., Tello-Alvarado, J. C., Moreno-Moreno, S., & Guerra-Vásquez, F. (2011). Extension of the geographical range of White-browed Titi monkeys (Callicebus discolor) and evidence for sympatry with San Martin Titi monkeys (Callicebus oenanthe). International Journal of Primatology, 32(4), 924–930.CrossRefGoogle Scholar
  126. Walther, G., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., et al. (2002). Ecological responses to recent climate change. Nature, 416(6879), 389–395.PubMedCrossRefGoogle Scholar
  127. Warren, D. L., Glor, R. E., & Turelli, M. (2010). ENMTools: A toolbox for comparative studies of environmental niche models. Ecography, 33(3), 607–611.Google Scholar
  128. Wilson, D. E., Mittermeier, R. A., Ruff, S., Martinez-Vilalta, A., & Llobet, T. (2013). Handbook of the mammals of the world: Primates. Arrington, VA: Buteo Books.Google Scholar
  129. Wyman, M. S., & Stein, T. V. (2009). Modeling social and land-use/land-cover change data to assess drivers of smallholder deforestation in Belize. Applied Geography, 30(3), 329–342.CrossRefGoogle Scholar
  130. Wyman, M. S., Stein, T. V., Southworth, J., & Horwich, R. H. (2011). Does population increase equate to conservation success? Forest fragmentation and conservation of the black howler monkey. Conservation and Society, 9(3), 216–228.CrossRefGoogle Scholar
  131. Young, K. R. (1996). Threats to biological diversity caused by coca/cocaine deforestation in Peru. Environmental Conservation, 23(1), 7–15.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Neotropical Primate ConservationManchesterUK
  2. 2.Asociación Neotropical Primate Conservation PerúLa EsperanzaPeru

Personalised recommendations