Skip to main content

Optimization of the Dictionary Size Selection: An Efficient Combination of K-SVD and PCA to Denoise and Enhance Digital Mammography Contrast

  • Conference paper
  • First Online:
Intelligent Computing Systems (ISICS 2016)

Abstract

Mammographic images are often characterized by a low contrast and a relatively high noise content, due to 3-D breast structures projection onto a 2-D image plane. These effects may hinder lesion detection. During the past decade, many techniques have been proposed to improve the mammography contrast. Nevertheless, some image regions might not be adequately enhanced, while others might be subjected to excessive enhancement. For that reason, we propose a method to denoise the images and enhance contrast uniformly. First, we used a machine learning method to create a sparse dictionary from the database, then we used the principal component analysis to reduce the size of the dictionary before decoding each patch of a given mammography. Finally, the algorithm was tested on MIAS and INbreast databases using the same parameters’ values for each image. The results show that the visibility of breast mass and anatomic detail were considerably improved compared to the wavelet method and the computation time is halved compared to the conventional sparse coding algorithm and the curvelet method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IARC. Globocan 2012: Estimatied Cancer Incidence, Mortality and Prevalence Worldwide in 2012 (2012). http://globocan.iarc.fr/Default.aspx

  2. Cady, B., Michaelson, J.S.: The life-sparing potential of mammographic screening. Cancer 91(9), 1699–1703 (2001)

    Article  Google Scholar 

  3. Elmore, J.G., Armstrong, K., Lehman, C.D., Fletcher, S.W.: Screening for breast cancer. Jama 293(10), 1245–1256 (2005)

    Article  Google Scholar 

  4. Li, H., Wang, Y., Liu, K.J., Lo, S.-C.B., Freedman, M.T.: Computerized radiographic mass detection-Part I: lesion site selection by morphological enhancement and contextual segmentation. IEEE Trans. Med. Imaging 20(4), 289–301 (2001)

    Article  Google Scholar 

  5. Rangayyan, R.M., Ayres, F.J., Leo Desautels, J.E.: A review of computer-aided diagnosis of breast cancer: toward the detection of subtle signs. J. Franklin Inst. 344(3), 312–348 (2007)

    Article  MATH  Google Scholar 

  6. Ganesan, K., Acharya, U.R., Chua, C.K., Min, L.C., Abraham, K.T., Ng, K.-H.: Computer-aided breast cancer detection using mammograms: a review. IEEE Rev. Biomed. Eng. 6, 77–98 (2013)

    Article  Google Scholar 

  7. Gordon, R., Rangayyan, R.M.: Feature enhancement of film mammograms using fixed and adaptive neighborhoods. Appl. Opt. 23(4), 560–564 (1984). Optical Society of America

    Article  Google Scholar 

  8. Laine, A.F., Schuler, S., Fan, J., Huda, W.: Mammographic feature enhancement by multiscale analysis. IEEE Trans. Med. Imaging 13(4), 725–740 (1994)

    Article  Google Scholar 

  9. Mencattini, A., Salmeri, M., Lojacono, R., Frigerio, M., Caselli, F.: Mammographic images enhancement and denoising for breast cancer detection using dyadic wavelet processing. IEEE Trans. Instrum. Meas. 57(7), 1422–1430 (2008)

    Article  Google Scholar 

  10. Candes, E.J., Donoho, D.L.: Curvelets, multiresolution representation, and scaling laws. In: International Symposium on Optical Science and Technology, pp. 1–12. International Society for Optics and Photonics (2000)

    Google Scholar 

  11. Candes, E.J., Demanet, L., Donoho, D.L., Ying, L.: Fast discrete curvelet transforms. Multiscale Model. Simul. 5(3), 861–899 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Aharon, M., Elad, M., Bruckstein, A.: K-svd: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Sig. Process. 54(11), 4311–4322 (2006)

    Article  Google Scholar 

  13. Daubechies, I., et al.: Ten Lectures on Wavelets. vol. 61. SIAM (1992)

    Google Scholar 

  14. Chen, S., Billings, S.A., Luo, W.: Orthogonal least squares methods and their application to non-linear system identification. Int. J. Control 50(5), 1873–1896 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rubinstein, R., Zibulevsky, M., Elad, M.: Double sparsity: learning sparse dictionaries for sparse signal approximation. IEEE Trans. Sig. Process. 58(3), 1553–1564 (2010)

    Article  MathSciNet  Google Scholar 

  16. Davis, G.M., Mallat, S.G., Zhang, Z.: Adaptive time-frequency decompositions. Opt. Eng. 33(7), 2183–2191 (1994)

    Article  Google Scholar 

  17. Tropp, J.A.: Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inf. Theor. 50(10), 2231–2242 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kirby, M., Sirovich, L.: Application of the karhunen-loeve procedure for the characterization of human faces. IEEE Trans. Pattern Anal. Mach. Intell. 12(1), 03–108 (1990)

    Article  Google Scholar 

  19. Tabár, L., Tot, T., Dean, P.B.: Breast cancer: the art and science of early detection with mammography: perception, interpretation, histopathologic correlation. Georg Thieme Verlag (2004)

    Google Scholar 

  20. Suckling, J., Parker, J., Dance, D.R., Astley, S., Hunt, J., Doggis, C.R.M., Ricketts, I., Stamatakis, E., Cerneaz, N., Kok, S.L., Taylor, P., Betal, D., Savage, J.: The mammographic image analysis society digital mammogram database. In: Exerpta Medica. International Congress Series, vol. 1069, pp. 375–378 (1994)

    Google Scholar 

  21. Moreira, I.C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M.J., Cardoso, J.S.: Inbreast: toward a full-field digital mammographic database. Acad. Radiol. 19(2), 236–248 (2012)

    Article  Google Scholar 

  22. Monnin, P., Gutierrez, D., Bulling, S., Guntern, D., Verdun, F.R.: A comparison of the performance of digital mammography systems. Med. Phys. 34(3), 906–914 (2007)

    Article  Google Scholar 

  23. Poulos, A., McLean, D., Richard, M., Heard, R.: Breast compression in mammography: how much is enough? Australas. Radiol. 47(2), 121–126 (2003)

    Article  Google Scholar 

  24. Candes, E.J.: CurveLab-2.1.3 (2012). http://www.curvelet.org/index.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sègbédji R. T. J. Goubalan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Goubalan, S.R.T.J., Djemal, K., Maaref, H. (2016). Optimization of the Dictionary Size Selection: An Efficient Combination of K-SVD and PCA to Denoise and Enhance Digital Mammography Contrast. In: Martin-Gonzalez, A., Uc-Cetina, V. (eds) Intelligent Computing Systems. ISICS 2016. Communications in Computer and Information Science, vol 597. Springer, Cham. https://doi.org/10.1007/978-3-319-30447-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30447-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30446-5

  • Online ISBN: 978-3-319-30447-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics