Skip to main content

Systematic Determination of Eigenfields in Frequency Domain

  • Conference paper
  • First Online:
  • 832 Accesses

Part of the book series: Mathematics in Industry ((TECMI,volume 23))

Abstract

This paper addresses numerical procedures utilized to the accurate and robust calculation of thousands of eigenpairs for the Dirac billiard resonator. The main challenges posed by the present work are: first, the capability of the approaches to tackle the large-scale eigenvalue problem, second, the ability to accurately extract many, i.e. order of thousands, interior eigenfrequencies for the considered problem, and third, the efficient implementation of the underlying approaches. The eigenfield calculations are accomplished in two steps. Initially, the finite integration technique or the finite element method with higher order curvilinear elements is applied, and further, the (B-)Lanczos method with its variations is exploited for the eigenpair determination. The comparative assessment of the numerical results to the complementary measurements confirms the applicability of the approaches and points out the significant reductions of computational costs. Finally, all of the results indicate that the suggested techniques can be used for precise determination of many eigenfrequencies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The measurements are kindly provided from the Institute for Nuclear Physics at Technical University of Darmstadt [2, 15].

References

  1. Bittner, S., Dietz, B., Miski-Oglu, M., Richter, A.: Extremal transmission through a microwave photonic crystal and the observation of edge states in a rectangular Dirac billiard. Phys. Rev. B 85(6), 064301 (2012)

    Article  Google Scholar 

  2. Bittner, S., Dietz, B., Miski-Oglu, M., Oria Iriarte, P., Richter, A., Schäfer, F.: Observation of a Dirac point in microwave experiments with a photonic crystal modeling graphene. Phys. Rev. B 82(1), 014301 (2010)

    Article  Google Scholar 

  3. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  Google Scholar 

  4. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., Firsov, A.A.: Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005)

    Article  Google Scholar 

  5. Ackermann, W., Benderskaya, G., Weiland, T.: State of the art in the simulation of electromagnetic fields based on large scale finite element eigenanalysis. ICS Newslett. 17(2), 3–12 (2010)

    Google Scholar 

  6. Banova, T., Ackermann, W., Weiland, T.: Accurate determination of thousands of eigenvalues for large-scale eigenvalue problems. IEEE Trans. Magn. 50(2), 481–484 (2014)

    Article  Google Scholar 

  7. Weiland, T.: A discretization method for the solution of Maxwell’s equations for six-component fields. Electr. Commun. (AEÜ) 31(3), 116–120 (1977)

    Google Scholar 

  8. Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl. Bur. Stand. 45(4), 255–282 (1950)

    Article  MathSciNet  Google Scholar 

  9. CST - Computer Simulation Technology AG: CST Microwave Studio. Darmstadt (2012). http://www.cst.com.CitedAug112014

  10. Saad, Y.: Numerical Methods for Large Eigenvalue Problems. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (2011)

    Book  MATH  Google Scholar 

  11. Saad, Y.: Filtered conjugate residual-type algorithms with applications. SIAM J. Matrix Anal. Appl. 28(3), 845–870 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fang, H., Saad, Y.: A filtered Lanczos procedure for extreme and interior eigenvalue problems. SIAM J. Sci. Comput. 34(4), A2220–A2246 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Balay, D., Brown, J., Buschelman, K., Eijkhout, V., Gropp, W., Kaushik, D., Knepley, M., McInnes, L.C., Smith, B., Zhang, H.: PETSc users manual. Argonne National Laboratory (2011)

    Google Scholar 

  14. Intel: Intel ©Math Kernel Library. (2010). http://www.intel.com.CitedAug112014

  15. Cuno, C.: Randzustände in einem supraleitenden Mikrowellen-Diracbillard. Bachelor’s thesis, Technische Universität Darmstadt, Darmstadt (2012)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the “Excellence Initiative” of the German Federal and State Governments and the Graduate School of Computational Engineering at TU Darmstadt.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todorka Banova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Banova, T., Ackermann, W., Weiland, T. (2016). Systematic Determination of Eigenfields in Frequency Domain. In: Bartel, A., Clemens, M., Günther, M., ter Maten, E. (eds) Scientific Computing in Electrical Engineering. Mathematics in Industry(), vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-30399-4_5

Download citation

Publish with us

Policies and ethics