Skip to main content

A Discrete-Continuous Modeling Framework to Study the Role of Swarming in a Honeybee-Varroa destrutor-Virus System

  • Conference paper
  • First Online:
Mathematical and Computational Approaches in Advancing Modern Science and Engineering

Abstract

In this paper, we present a general discrete-continuous modeling framework to study the effect of swarming on the dynamics of a honeybee colony infested with varroa mite and Acute Bee Paralysis Virus (ABPV) . Two scenarios are studied under which swarming takes place i.e., swarming due to overcrowding and swarming at fixed time intervals. For this purpose, we use an existing mathematical model in the literature. The dependent variables in the model are uninfected bees, infected bees, virus carrying mites and total mites that infest the colony. The model is studied in variable coefficients, in particular, step functions with each season as a constant in time. It is observed that the percentage of healthy bees leaving with the swarm has a great impact on the strength and survival of the parent colony. A colony, that otherwise dies off due to virus, survives as a properly working colony if the percentage of the mites leaving the parent colony is above a critical value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Britton, N.F., Franks, N.R., Pratt, S. C., Seeley, T.D.: Deciding on a new home: how do honeybees agree? Proc. R. Soc. Biol. Sci. 269 (1498), 1383–1388 (2002)

    Article  Google Scholar 

  2. Eberl, H.J., Frederick, M.R., Kevan, P.G.: The importance of brood maintenance terms in simple models of the honeybee – Varroa destructor – acute bee paralysis virus complex. Electron. J. Differ. Equ. Conf. Ser. 19, 85–98 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Fries, I., Hansen, H., Imdorf, A., Rosenkranz, P.: Swarming in honey bees (Apis mellifera) and Varroa destructor population development in Sweden. Apidologie 34, 389–397 (2003)

    Article  Google Scholar 

  4. Genersch, E., von der Ohe, W., Kaatz, H., Schroeder, A., Otten, C.,́ Büchler, R., Berg, S., Ritter, W., Mühlen, W., Gisder, S., Meixner, M., Liebig, G., Rosenkranz, P.: The German bee monitoring project: a long term study to understand periodically high winter losses of honey bee colonies. Apidologie 41, 332–352 (2010)

    Article  Google Scholar 

  5. Kevan, P.G., Hannan, M., Ostiguy, N., Guzman-Novoa, E.: A summary of the varroa-virus disease complex in honey bees. Am. Bee J. 146 (8), 694–697 (2006)

    Google Scholar 

  6. Martin, S.: A population dynamic model of the mite varroa jacobsoni. Ecol. Model. 109, 267–281 (1998)

    Article  Google Scholar 

  7. Martin, S.J.: Varroa destructor reproduction during the winter in apis mellifera colonies in UK. Exp. Appl. Acarol. 25 (4), 321–325 (2001)

    Article  Google Scholar 

  8. Myerscough, M.R.: Dancing for a decision: a matrix model for nest-site choice by honey- bees. Proc. R. Soc. Lond. B: Biol. Sci. 270 (1515), 577–582 (2003)

    Article  Google Scholar 

  9. Ostiguy, N.: Honey bee viruses: transmission routes and interactions with varroa mites. In: 11 Congreso Internacional De Actualizacion Apicola, vol. 9 al 11De Junio De 2004. Memorias., p. 47 (2004)

    Google Scholar 

  10. Passino, K.M., Seeley, T.D.: Modeling and analysis of nest-site selection by honeybee swarms: the speed and accuracy trade-off. Behav. Ecol. Sociobiol. 59 (3), 427–442 (2006)

    Article  Google Scholar 

  11. Ratti, V., Kevan, P.G., Eberl, H.J.: A mathematical model for population dynamics in honeybee colonies infested with varroa destructor and the acute bee paralysis virus. Can. Appl. Math. Q. 21 (1), 63–93 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Ratti, V., Kevan, P.G., Eberl, H.J.: A mathematical model for population dynamics in honeybee colonies infested with varroa destructor and the acute bee paralysis virus with seasonal effects. Bull. Math. Biol. 77 (8), 1493–1520 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sumpter, D.J., Martin, S.J.: The dynamics of virus epidemics in varroa-infested honey bee colonies. J. Anim. Ecol. 73 (1), 51–63 (2004)

    Article  Google Scholar 

  14. Winston, M.L.: The biology of the honey bee. Harvard University Press, Cambridge (1991)

    Google Scholar 

  15. ZKBS (Zentralkommittee für biologiche Sicherheit des Bundesamts für Verbraucherschutz und Lebensmittelsicherheit); Empfehlung Az.: 45242.0087 - 45242.0094, 2012, (in German: Central Committee for Biological Safety of the Federal Agency for Consumer Protection and Food Safety, Recommendation 45242.0087-45242.0094, 2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vardayani Ratti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Ratti, V., Kevan, P.G., Eberl, H.J. (2016). A Discrete-Continuous Modeling Framework to Study the Role of Swarming in a Honeybee-Varroa destrutor-Virus System. In: Bélair, J., Frigaard, I., Kunze, H., Makarov, R., Melnik, R., Spiteri, R. (eds) Mathematical and Computational Approaches in Advancing Modern Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-30379-6_28

Download citation

Publish with us

Policies and ethics