Skip to main content

Tracking the Interface of the Diffusion-Absorption Equation: Theoretical Analysis

  • Conference paper
  • First Online:
Intelligent Mathematics II: Applied Mathematics and Approximation Theory

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 441))

  • 876 Accesses

Abstract

This work is devoted to the theoretical study of the Cauchy problem for the degenerate parabolic equation of the diffusion-absorption type \(u_t=\varDelta u^m-au^q \) with the exponents \(m>1\), \(q>0\), \(m+q\ge 2\) and constant \(a>0\). We propose an algorithm for tracking the interface in the case of arbitrary \( m>1\) and \(q>0\). Based on the idea of Shmarev (Nonlinear Anal 53:791–828, 2003; Progr Nonlinear Diff Eqn Appl Birkhäuser, Basel 61:257–273, 2005), we transform the moving support of the solution into a time-independent domain by means of introduction of a local system of Lagrangian coordinates. In the new coordinate system the problem converts into a system of nonlinear differential equations, which describes the motion of a continuous medium. This system is solved by means of the modified Newton method, which allows one to reduce the nonlinear problem to a sequence of linear degenerate problems. We formulate the problem in the framework of Sobolev spaces and prove the convergence of the sequence of approximate solutions to the solution of the original problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angenent, S.B.: Analyticity of the interface of the porous media equation after the waiting time. Proc. Amer. Math. Soc. 102, 329–336 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antontsev, S., Shmarev, S.: A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions. Nonlinear Anal. 60, 515–545 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, D., Brezzi, F., Cockburn, B., Marini, L.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3) (2001)

    Google Scholar 

  5. Daskalopoulos, P., Hamilton, R.: Regularity of the free boundary for the porous medium equation. J. Amer. Math. Soc. 11(4), 899–965 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Diaz, J., Shmarev, S.: Lagrangian approach to the study of level sets: application to a free boundary problem in climatolog. Arch. Ration. Mech. Anal. 194, 75–103 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Diaz, J., Shmarev, S.: Lagrangian approach to the study of level sets. II. A quasilinear equation in climatology. J. Math. Anal. Appl. 352, 475–495 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dibenedetto, E., Hoff, D.: An interface tracking algorithm for the porous medium equation. Trans. Amer. Math. Soc. 284(2) (1984)

    Google Scholar 

  9. Duque, J.: Método dos Elementos Finitos para Problemas com Fronteiras Livres. Ph.D. Thesis, Universidade da Beira Interior, Ciências (2013)

    Google Scholar 

  10. Evans, L.: Partial Differential Equations, vol. 19, 2nd edn. In: Graduate Studies in Mathematics. American Mathematical Society (2010)

    Google Scholar 

  11. Galaktionov, V., Shmarev, S., Vazquez, J.: Regularity of interfaces in diffusion processes under the influence of strong absorption. Arch. Ration. Mech. Anal. 149, 183–212 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Galaktionov, V., Shmarev, S., Vazquez, J.: Regularity of solutions and interfaces to degenerate parabolic equations. The intersection comparison method. In: Free boundary problems: theory and applications, vol. 115–130. Chapman & Hall/CRC, Boca Raton (1999)

    Google Scholar 

  13. Galiano, G., Shmarev, S., Velasco, J.: Existence and nonuniqueness of segregated solutions to a class of cross-diffusion systems. arXiv:1311.3454v1 [math.AP] (2013)

  14. Kersner, R.: The behaviour of temperature fronts in media with nonlinear heat conductivity under absorption. Moscow Univ. Math. Bull. 33(5), 35–41 (1978). Translated from: Vestnik Moskov. Univ. Ser. I Mat. Mekh, 5, 44–51 (1978)

    Google Scholar 

  15. Koch, H.: Non-Euclidean singular integrals and the porous medium equation, Habilitation Thesis, Univ. of Heidelberg (1999)

    Google Scholar 

  16. Kolmogorov, A.N., Fomin, S.V.: Elements of the theory of functions and functional analysis, measure, the Lebesgue integral, Hilbert, vol. 2. Translated from the first (1960) Russian ed. by Hyman Kamel and Horace Komm, Graylock Press, Albany, N.Y. (1961)

    Google Scholar 

  17. Ladyzhenskaya, O.A., Uralćtseva, N.A.: Linear and quasilinear elliptic equations. Translated from the Russian by Scripta Technica, Inc., Translation editor: Leon Ehrenpreis, Academic Press, New York-London (1968)

    Google Scholar 

  18. Ladyzhenskaya, O.A., Solonnikov, V.A., Uralćtseva, N.A.: Linear and quasilinear equations of parabolic type. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, vol. 23. American Mathematical Society, Providence, R.I. (1968)

    Google Scholar 

  19. Mimura, M., Nakaki, T., Tomoeda, K.: A numerical approach to interface curves for some nonlinear diffusion equations. Japan J. Appl. Math. 1, 93–139 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nakaki, T.: Numerical interfaces in nonlinear diffusion equations with finite extinction phenomena. Hiroshima Math. J. 18, 373–397 (1988)

    MathSciNet  MATH  Google Scholar 

  21. Shmarev, S.: Interfaces in solutions of diffusion-absorption equations. RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 96, 129–134 (2002)

    Google Scholar 

  22. Shmarev, S.: Interfaces in multidimensional diffusion equations with absorption terms. Nonlinear Anal. 53, 791–828 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shmarev, S.: On a class of degenerate elliptic equations in weighted Hölder spaces. Diff. Integr. Eqn. 17, 1123–1148 (2004)

    MathSciNet  MATH  Google Scholar 

  24. Shmarev, S.: Interfaces in solutions of diffusion-absorption equations in arbitrary space dimension. In: Trends in partial differential equations of mathematical physics. Progr. Nonlinear Diff. Eqn. Appl. Birkhäuser, Basel 61, 257–273 (2005)

    Google Scholar 

  25. Tomoeda, K.: Convergence of numerical interface curves for nonlinear diffusion equations, Advances in computational methods for boundary and interior layers. In: Lecture Notes of an International Short Course held in Association with the BAIL III Conference, Trinity College, Dublin, Ireland (1984)

    Google Scholar 

  26. Zhang, Q., Wu, Z.-L.: Numerical simulation for porous medium equation by local discontinuous Galerkin finite element method. J. Sci. Comput. 38, 127–148 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waleed S. Khedr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Khedr, W.S. (2016). Tracking the Interface of the Diffusion-Absorption Equation: Theoretical Analysis. In: Anastassiou, G., Duman, O. (eds) Intelligent Mathematics II: Applied Mathematics and Approximation Theory. Advances in Intelligent Systems and Computing, vol 441. Springer, Cham. https://doi.org/10.1007/978-3-319-30322-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30322-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30320-8

  • Online ISBN: 978-3-319-30322-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics