Advertisement

Hyperelastic-Based Adaptive Dynamics Methodology in Knowledge Acquisition for Computational Intelligence on Ontology Engineering of Evolving Folksonomy Driven Environment

  • Massimiliano Dal MasEmail author
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 639)

Abstract

Due to the rapid growth of structured/unstructured and user-generated data (e.g., social media sites) volume of data is becoming too big or it moves too fast or it exceeds current processing capacity and so traditional data processing applications are inadequate. Computational Intelligence with Concept-based approaches can detect sentiments analyzing the concept based on text expressions without analyzing the singlef words as in the purely syntactical techniques. On human-centric intelligent systems Semantic networks can simulate the human complex frames in a reasoning process providing efficient association and inference mechanisms, while ontology can be used to fill the gap between human and Computational Intelligence for a task domain. For an evolving environment it is necessary to understand what knowledge is required for a task domain with an adaptive ontology matching. To reflect the evolving knowledge this paper considers ontologies based on folksonomies according to a new concept structure called “Folksodriven” to represent folksonomies. To solve the problems inherent an uncontrolled vocabulary of the folksonomy it is presented a Folksodriven Structure Network (FSN): a folksonomy tags suggestions built from the relations among the Folksodriven tags (FD tags). It was observed that the properties of the FSN depend mainly on the nature, distribution, size and the quality of the reinforcing FD tags. So, the studies on the transformational regulation of the FD tags are regarded to be important for an adaptive folksonomies classifications in an evolving environment used by Intelligent Systems to represent the knowledge sharing. The chapter starts from the discussion on the deformation exhibiting linear behavior on FSN based on folksonomy tags chosen by different user on web site resources. Then it’s formulated a constitutive law on FSN investigating towards a systematic mathematical analysis on stress analysis and equations of motion for an evolving ontology matching on an environment defined by the users’ folksonomy choice. The adaptive ontology matching and the elastodynamics are merged to obtain what we can call the elasto-adaptive-dynamics methodology of the FSN. Furthermore it is shown the last development defining a hyperelastic dynamic considering the internal folksonomy behavior of the stress and strain from original to deformed configuration.

Keywords

Computational intelligence Artificial intelligence Big data Sentiment analysis Sentic computing Semantic web Folksonomy Ontology Network Elasticity Plasticity Natural language processing Quasicrystal 

References

  1. 1.
    Antoniou, G., Groth, P., van Harmelen, F., Hoekstra, R.: A Semantic Web Primer. Cooperative Information Systems series (2012)Google Scholar
  2. 2.
    Asur, S., Huberman, B.: Predicting the future with social media. In: 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), vol. 1. IEEE (2010)Google Scholar
  3. 3.
    Bak, P.: Symmetry, stability and elastic properties of icosahedral in commensurate crystals. Phys. Rev. B 32(9), 5764–5772 (1985)Google Scholar
  4. 4.
    Barabási, A., Vazquez, A., Oliveira, J., Goh, K., Kondor, I., Dezso, Z.: Modeling bursts and heavy tails in human dynamics. Phys. Rev. E 73(3) (2006)Google Scholar
  5. 5.
    Bezdek, J.C.: What is computational intelligence? Computational Intelligence Imitating Life, pp. 1–12. IEEE Press, New York (1994)Google Scholar
  6. 6.
    Born, M., Huang, K.: Dynamic Theory of Crystal Lattices. Oxford Clarendon Press (1954)Google Scholar
  7. 7.
    Burnap, P., Gibson, R., Sloan, L., Southern, R.: 140 Characters to Victory?: Using Twitter to predict the UK 2015 General Election (2015). arXiv preprint arXiv:1505.01511
  8. 8.
    Calliard, D.: Dislocation mechanism and plasticity of quasicrystals: TEM observations in icosahedral Al-Pd-Mn. Mater. Sci. Forum 509(1), 50–56 (2006)Google Scholar
  9. 9.
    Cattuto, C., Schmitz, C., Baldassarri, A., Servedio, V.D.P., Loreto, V., Hotho, A., Grahl, M., Summe, G.: Network properties of folksonomies. In: Proceedings of the WWW2007 International World Wide Web Conference (2007)Google Scholar
  10. 10.
    Chakrabarty, J.: Theory of plasticity. Butterworth-Heinemann (2009)Google Scholar
  11. 11.
    Chen, Z.: Computational Intelligence for Decision Support. CRC Press (2000)Google Scholar
  12. 12.
    Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 2. Interscience Wiley (2008)Google Scholar
  13. 13.
    Dal Mas, M.: Elastic adaptive dynamics methodology on ontology matching on evolving folksonomy driven environment. Evolving Syst. J. 5(1), 33–48 (2014). (http://link.springer.com/article/10.1007%2Fs12530-013-9086-5)Google Scholar
  14. 14.
    Dal Mas, M.: Cluster analysis for a scale-free folksodriven structure network. Accepted for the International Conference on Social Computing and its Applications (SCA 2011) (2011). http://arxiv.org/abs/1112.4456
  15. 15.
    Dal Mas, M.: Elastic adaptive ontology matching on evolving folksonomy driven environment In: Proceedings of the IEEE Conference on Evolving and Adaptive Intelligent Systems EAIS 2012, pp. 35–40. Madrid, Spain (2012)Google Scholar
  16. 16.
    Dal Mas, M.: Elasticity on ontology matching of folksodriven structure network. Accepted for the CIIDS 2012—Kaohsiung Taiwan R.O.C. (2012). http://arxiv.org/abs/1201.3900
  17. 17.
    Dal Mas, M.: Folksodriven Structure Network. In: Ontology Matching Workshop (OM-2011) collocated with the 10th International Semantic Web Conference (ISWC-2011), CEUR WS, vol. 814 (2011). (http://arxiv.org/abs/1109.3138), (http://ceur-ws.org/Vol-814/)
  18. 18.
    Dal Mas, M.: Intelligent interface architectures for folksonomy driven structure net. In: Proceedings of the 5th International Workshop on Intelligent Interfaces for Human-Computer Interaction (IIHCI-2012), pp. 519–525. IEEE, Palermo, Italy (2012). doi: 10.1109/CISIS.2012.158, (http://ieeexplore.ieee.org/876 xpl/articleDetails.jsp?arnumber=6245653)
  19. 19.
    Dal Mas, M.: Layered ontological image for intelligent interaction to extend user capabilities on multimedia systems in a folksonomy driven environment. In: Smart Innovation, Systems and Technologies, vol. 36, pp. 103–122. Springer (2015). doi: 10.1007/978-3-319-17744-1_7, (http://link.springer.com/chapter/10.1007%2F978-3-319-17744-1_7)Google Scholar
  20. 20.
    Dal Mas, M.: Ontology Temporal Evolution for Multi-entity Bayesian Networks under Ex-ogenous and Endogenous Semantic (2010). http://arxiv.org/abs/1009.2084
  21. 21.
    Damme, C.V., Hepp, M., Siorpaes, K.: FolksOntology. In: Proceedings of the ESWC Workshop ’Bridging the Gap between Semantic Web and Web 2.0, pp. 57–70 (2007)Google Scholar
  22. 22.
    Ding, D.H., Yang, W.G., Hu, C.Z.: Generalized elastic theory of quasicrystals. Phys. Rev. B 48(10), 7003–7010 (1993)CrossRefGoogle Scholar
  23. 23.
    Duch, W.: Towards comprehensive foundations of computational intelligence. Challenges for Computational Intelligence. Springer, Berlin (2007)CrossRefGoogle Scholar
  24. 24.
    García-Silva, A., Corcho, O., Alani, H., Gómez-Pérez, A.: Review of the state of the art: discovering and associating semantics to tags in folksonomies. J. Knowl. Eng. Rev. Arch. 27(1), 57–85 (2012)CrossRefGoogle Scholar
  25. 25.
    Grandi, F.: Introducing an annotated bibliography on temporal and evolution aspects in the semantic web. ACM SIGMOD Rec. 41(4) (2012)Google Scholar
  26. 26.
    Grätzer, G.A.: General Lattice Theory. Birkhäuser, Basel (2003)zbMATHGoogle Scholar
  27. 27.
    Grunbaum, B., Shephard, G.C.: Tilings and Patterns. Dover Publications (2011)Google Scholar
  28. 28.
    Han, W., Reddy, B.D.: Computational plasticity: the variational basis and numerical analysis. Comput. Mech. Adv. 2(4) (1995)Google Scholar
  29. 29.
    Hashiguchi, K.: Elastoplasticity Theory. Springer (2013)Google Scholar
  30. 30.
    Hill, R.: On constitutive inequalities for simple materials. Int. J. Mech. Phys. Solids 16(1968), 229–242 (1968)CrossRefzbMATHGoogle Scholar
  31. 31.
    Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies. Chapman & Hall/CRC Textbooks in Computing (2011)Google Scholar
  32. 32.
    Jacob, E.K.: Classification and categorization: a difference that makes a difference. Libr. Trends 52(3), 515–540 (2004)Google Scholar
  33. 33.
    Kitchin, R.: Big data, new epistemologies and paradigm shifts. Big Data & Society 1.1, 2053951714528481 (2014)Google Scholar
  34. 34.
    Levine, D., Steinhardt, P.J.: Quasicrystals: a new class of ordered structures. Phys. Rev. 53, 2477–2480 (1984)Google Scholar
  35. 35.
    Liu, B.: Sentiment Analysis: Mining Opinions, Sentiments, and Emotions. Cambridge University Press (2005)Google Scholar
  36. 36.
    Lu, P.J., Steinhardt, P.J.: Decagonal and quasi-crystalline tilings in medieval islamic architecture. Science 315(2007), 1106–1110 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    McCarthy, J.: The future of AI-A manifesto. AI Magazine 26 (2005)Google Scholar
  38. 38.
    Merholz, P.: Metadata for the masses (2004). http://adaptivepath.com/ideas/e000361
  39. 39.
    Mussel, L.: Conformazione e struttura di bio-polimeri. Dip. di Scienze Chimiche—Università di Padova—Padova Digital University Archive (1964)Google Scholar
  40. 40.
    Ostermann, S., Iosup, A., Yigitbasi, M.N., Prodan, R., Fahringer, T., Epema, D.: An early performance analysis of cloud computing services for scientific computing. In: CloudComp, LNICST, vol. 34, pp. 1–10, (2009)Google Scholar
  41. 41.
    Reshef, D.N., Reshef, Y.A., Mitzenmacher, M., Sabeti, P.C.: Detecting novel associations in large data sets. Science 334(6062), 1518–1524 (2011). doi: 10.1126/science.1205438 Google Scholar
  42. 42.
    Rosenthal, S., Nakov, P., Kiritchenko, S., Mohammad, S.M., Ritter, A., Stoyanov, V.: SemEval-2015 task 10. In: Proceedings of the 9th International Workshop on Semantic Evaluation, SemEval ’2015, Denver, Colorado, June 2015Google Scholar
  43. 43.
    Ruths, D., Pfeffer, J.: Social media for large studies of behavior. Science 346(6213), 1063–1064 (2014)Google Scholar
  44. 44.
    Sands, D.E.: Vectors and tensors in crystallography. Dover Publications (2002)Google Scholar
  45. 45.
    Simo, J.C., Ju, J.W.: Strain- and stress-based continuum damage models–II. Computational aspects Department of Mechanical Engineering, Stanford University Press (1986)Google Scholar
  46. 46.
    Steurer, W., Deloudi, S.: Crystallography of Quasicrystals. Springer (2009)Google Scholar
  47. 47.
    Thurner, S., Kyriakopoulos, F., Tsallis, C.: Unified model for network dynamics exhibiting nonextensive statistics. Phys. Rev. (2007)Google Scholar
  48. 48.
    Trant, J.: Studying social tagging and folksonomy: a review and framework. J. Digit. Inf. 10(1) (2009)Google Scholar
  49. 49.
    van der Maaten, L.J.P., Postma, E.O., van den Herik, H.J.: Dimensionality reduction: a comparative review. Tilburg University Technical report, TiCC-TR 2009-005 (2009)Google Scholar
  50. 50.
    van Melkebeek, D.: Special Issue “Conference on Computational Complexity 2010”. Computational Complexity vol. 20, no. 2, pp. 173–175. Springer, Basel (2010)Google Scholar
  51. 51.
    White, C.: Using big data for smarter decision making. BI research (2011)Google Scholar
  52. 52.
    Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-level sentiment Analysis. In: Proceedings of HLT-EMNLP-2005 (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Research and Development - Artificial Intelligence Unit technologosMilanoItaly

Personalised recommendations