Abstract
The rapid growth of the World Wide Web and social media allows users playing an active role in the contents’ creation process. Users can evaluate the brands’ reputation and quality exploiting the information provided by new marketing channels, such as social media, social networks , and electronic commerce (or e-commerce). Consequently, enterprises need to spot and analyze these digital data in order to improve their reputation among the consumers. The aim of this chapter is to highlight the common approaches of sentiment analysis in social media streams and the related issues with the cloud computing , providing the readers with a deep understanding of the state of the art solutions.
Keywords
- Big data analyses
- Brand monitoring
- Cloud-based processing
- Computational intelligence
- Sentiment analysis
- Social media stream
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
O’Reilly, T.: What is web 2.0—design patterns and business models for the next generation of software. Resource document. http://oreilly.com/web2/archive/what-is-web-20.html (2005). Accessed 15 Sept 2014
Kietzmann, J.H., Hermkens, K., McCarthy, I.P., Silvestre, B.S.: Social media? Get serious! Understanding the functional building blocks of social media. Bus. Horizons 54(3), 241–251 (2011)
Noordhuis, P., Heijkoop, M., Lazovik, A.: Mining Twitter in the cloud: a case study. In: IEEE 3rd International Conference on Cloud Computing, pp. 107–114 (2010)
Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee, G., Patterson, D. A., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: a berkeley view of cloud computing. Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Technical Report UCB/EECS, 28 (2009)
Shuai, Z., Shufen, Z., Xuebin, C., Xiuzhen, H.: Cloud computing research and development trend. In: 2nd International Conference on Future Networks, pp. 93–97 (2010)
Strauss, R.E., Schoder, D., Gebauer, J.: The relevance of brands for electronic commerce results from an empirical study of consumers in Europe. In: 34th Annual Hawaii International Conference on System Sciences, pp. 1–9 (2001)
Becker, K., Nobre, H., Kanabar, V.: Monitoring and protecting company and brand reputation on social networks: when sites are not enough. Glob. Bus. Econ. Rev. Inderscience Enterprises Ltd. 15(2/3), 293–308 (2013)
Terzi, N.: The impact of e-commerce on international trade and employment. Procedia—Soc. Behav. Sci. 24, 745–753 (2011)
Wang, L.: Post-crisis era of SMEs management innovation in E-commerce. In: 6th International Conference on Information Management, Innovation Management and Industrial Engineering (ICIII), pp. 471–474 (2013)
Xiaofeng, L., Dong, L., Yuanxin, T.: Application of web data mining and data warehouse in e-commerce. In: 2nd International Conference on Software Technology and Engineering (ICSTE), pp. 376–379 (2010)
Ziegler, C.N., Skubacz, M.: Towards automated reputation and brand monitoring on the web. In: IEEE International Conference on Web Intelligence, pp. 1066–1072 (2006)
Li, L.: Study on the interactive relationship between customer’s emotional response and the brand trust – In the view of online shopping. In: IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI), pp. 245–248 (2013)
Pang, B., Lee, L.: Opinion mining and sentiment analysis. In: Foundations and Trends in Information Retrieval, pp. 1–135 (2008)
Liu, B.: Sentiment analysis and opinion mining. Synth. Lect. Human Lang. Technol. 5(1), 1–167 (2012)
Bothos, E., Apostolou, D., Mentzas, G.: Using social media to predict future events with agent-based markets. IEEE Intell. Syst. 99, 1, 1, 0
Asur, S., Huberman, B.A.: Predicting the future with social media. In: 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), vol. 1, pp. 492–499, 31 Aug–3 Sept 2010
Lassen, N.B., Madsen, R., Vatrapu, R.: Predicting iPhone Sales from iPhone Tweets. In: 2014 IEEE 18th International Enterprise Distributed Object Computing Conference (EDOC), pp. 81–90, 1–5 Sept 2014
Stieglitz, S., Linh, D.-X.: Political communication and influence through microblogging-an empirical analysis of sentiment in Twitter messages and retweet behavior. In: 2012 45th Hawaii International Conference on System Science (HICSS), pp. 3500–3509, 4–7 Jan 2012
Hoang, T.-A., Cohen, W.W., Lim, E.-P., Pierce, D., Redlawsk, D.P.: Politics, sharing and emotion in microblogs. In: 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 282–289, 25–28 Aug 2013
Duan, W., Cao, Q., Yu, Y., Levy, S.: Mining online user-generated content: using sentiment analysis technique to study hotel service quality. In: 2013 46th Hawaii International Conference on System Sciences (HICSS), pp. 3119–3128, 7–10 Jan 2013
Marrese-Taylor, E., Velasquez, J.D., Bravo-Marquez, F.: Opinion zoom: a modular tool to explore tourism opinions on the web. In: 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), vol. 3, pp. 261–264, 17–20 Nov 2013
Tedeschi, A., Benedetto, F.: A cloud-based tool for brand monitoring in social networks. In: Proceedings of the IEEE International Conference on Future Internet of Things and Cloud (FiCloud-2014), pp. 541–546 (2014)
Social Media Monitoring Tools—Brandwatch, Brandwatch. Resource document. http://www.brandwatch.com/. Accessed 15 Sept 2014
Synthesio. Resource document. http://synthesio.com/corporate/en. Accessed 15 Sept 2014
Radian6. Resource document. http://www.exacttarget.com/products/social-media-marketing/radian6. Accessed 15 Sept 2014
Sangani, C., Sundaram, A.: Sentiment analysis of app store reviews. Methodology 4(1)
Guzman, E., Maalej, W.: How do users like this feature? A fine grained sentiment analysis of app reviews. In: 2014 IEEE 22nd International Requirements Engineering Conference (RE), 25–29 Aug 2014, pp. 153–162
Subu Sangameswar: Big Data—An Introduction
McKinsey Global Insitute: Big Data techniques and technologies. In: Big Data: The Next Frontier for Innovation, Competition and Productivity, June 2011
James Kobielus Measuring the Business Value of Big Data. http://www.ibmbigdatahub.com/blog/measuring-business-value-big-data
Mayer-Schönberger, V., Cukier, K.: Big Data: A Revolution that Will Transform How We Live, Work, and Think
IBM: Performance and Capacity Implications for Big Data. http://www.redbooks.ibm.com/redpapers/pdfs/redp5070.pdf
Cambria, E., Rajagopal, D., Olsher, D., Das, D.: Big social data analysis, Chapter 13. In: Big Data Computing
Rahnama, A.H.A.: Distributed real-time sentiment analysis for big data social streams. In: 2014 International Conference on Control, Decision and Information Technologies (CoDIT), pp. 789–794, 3–5 Nov 2014
Apache Storm. https://storm.apache.org/
Mukkamala, R.R., Hussain, A., Vatrapu, R.: Fuzzy-set based sentiment analysis of big social data. In: 2014 IEEE 18th International Enterprise Distributed Object Computing Conference (EDOC), pp. 71–80, 1–5 Sept 2014
Google prediction API. https://cloud.google.com/prediction/docs/sentiment_analysis
Minanovic, A., Gabelica, H., Krstic, Z.: Big data and sentiment analysis using KNIME: Online reviews vs. social media. In: 2014 37th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), pp. 1464–1468, 26–30 May 2014
Apache Nutch. http://nutch.apache.org/
HBase. http://hbase.apache.org/
Apache Hadoop. https://hadoop.apache.org/
KNIME. https://www.knime.org/
Conejero, J., Burnap, P., Rana, O., Morgan, J.: Scaling archived social media data analysis using a Hadoop cloud. In: 2013 IEEE Sixth International Conference on Cloud Computing (CLOUD), pp. 685–692, 28 June–3 July 2013
Rajurkar, G.D., Goudar, R.M.: A speedy data uploading approach for Twitter trend and sentiment analysis using HADOOP. In: 2015 International Conference on Computing Communication Control and Automation (ICCUBEA), pp. 580–584, 26–27 Feb 2015
Jiang, L., Ge, B., Xiao, W., Gao, M.: BBS opinion leader mining based on an improved PageRank algorithm using MapReduce. In: Chinese Automation Congress (CAC), 2013, pp. 392–396, 7–8 Nov 2013
Zhang, S., Zhang, S., Chen, X., Huo, X.: Cloud computing research and development trend. In: Second International Conference on Future Networks, 2010. ICFN’10, pp. 93–97, 22–24 Jan 2010
Das, N.S., Usmani, M., Jain, S.: Implementation and performance evaluation of sentiment analysis web application in cloud computing using IBM Blue mix. In: 2015 International Conference on Computing, Communication and Automation (ICCCA), pp. 668–673, 15–16 May 2015
Amazon Elastic Compute Cloud (EC2). http://aws.amazon.com/it/ec2/
Google App Engine https://cloud.google.com/appengine/docs
Microsoft Windows Azure. http://azure.microsoft.com/
Krishna, P.V., Misra, S., Joshi, D., Obaidat, M.S.: Learning automata based sentiment analysis for recommender system on cloud. In: International Conference on Computer, Information and Telecommunication Systems (CITS), pp. 1–5, 7–8 May 2013
Das, N.S., Usmani, M., Jain, S.: Implementation and performance evaluation of sentiment analysis web application in cloud computing using IBM Blue mix. In: 2015 International Conference on Computing, Communication and Automation (ICCCA), pp. 668–673, 15–16 May 2015
Hashem, I.A.T., Yaqoob, I., Badrul Anuar, N., Mokhtar, S., Gani, A., Khan, S.U.: The rise of “big data” on cloud computing: review and open research issues. Inf. Syst. 47, 98–115 (2015). ISSN: 0306–4379
Talia, D.: Clouds for scalable big data analytics. Computer 46(5), 98–101 (2013)
Marozzo, F., Talia, D., Trunfio, P.: Large-scale data analysis on cloud systems. In: Special theme: Big Data, ERCIM News, Apr 2012
Liu, B., Blasch, E., Chen, Y., Shen, D., Chen, G.: Scalable sentiment classification for Big Data analysis using Naïve Bayes Classifier. In: 2013 IEEE International Conference on Big Data, pp. 99–104, 6–9 Oct 2013
OpenNebula: The Open Source Solution for Data Center Virtualization. http://opennebula.org/
Liu, B., Blasch, E., Chen, Y., Shen, D., Chen, G.: Scalable sentiment classification for Big Data analysis using Naïve Bayes Classifier. In: 2013 IEEE International Conference on Big Data, pp. 99–104, 6–9 Oct 2013
Liu, B.: Sentiment analysis and subjectivity. In: Indurkhya, N., Damerau, F.J. (eds.) Handbook of Natural Language Processing, 2nd edn. (2010)
Liu, B.: Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data. Springer (2006 and 2011)
Feldman, R.: Techniques and applications for sentiment analysis. Commun. ACM 56(4), 82–89 (2013)
Klein, A., Altuntas, O., Häusser, T., Kessler, W.: Extracting investor sentiment from weblog texts: a knowledge-based approach. In: IEEE 13th Conference on Commerce and Enterprise Computing, pp. 1–9 (2011)
Singh, V.K., Piryani, R., Uddin, A., Waila, P.: Sentiment analysis of textual reviews; Evaluating machine learning, unsupervised and SentiWordNet approaches. In: 5th International Conference on Knowledge and Smart Technology, pp. 122–127 (2013)
Schölkopf, B.., Burges, C., Smola, A.: Making large-Scale SVM learning practical. In Advances in Kernel Methods—Support Vector Learning. MIT Press (1999)
Shawe-Taylor, J., Cristianini, N.: Support Vector Machines. Cambridge University Press (2000)
Scarpmaker.com. Common misspellings. Resource document. http://scrapmaker.com/view/language/common-misspellings.txt. Accessed 15 Sept 2014
Yoshida, S., Kitazono, J., Ozawa, S., Sugawara, T., Haga, T., Nakamura, S.: Sentiment analysis for various SNS media using Naïve Bayes classifier and its application to flaming detection. In: IEEE Symposium on Computational Intelligence in Big Data (CIBD), pp. 1–6, 9–12 Dec 2014
Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice Hall
Bo, P., Lee, L., Vaithyanathan, S.: Thumbs up?: sentiment classification using machine learning techniques. In: Proceedings of Conference on Empirical Methods in Natural Language Processing (EMNLP-2002) (2002)
Troussas, C., Virvou, M., Junshean Espinosa, K., Llaguno, K., Caro, J.: Sentiment analysis of Facebook statuses using Naive Bayes classifier for language learning. In: Fourth International Conference on Information, Intelligence, Systems and Applications (IISA), pp. 1–6, 10–12 July 2013
Colace, F., De Santo, M., Greco, L.: A probabilistic approach to tweets’ sentiment classification. In: Humaine Association Conference on Affective Computing and Intelligent Interaction (ACII), pp. 37–42, 2–5 Sept 2013
Akaichi, J., Dhouioui, Z., Lopez-Huertas Perez, M.J.: Text mining facebook status updates for sentiment classification. In: 17th International Conference System Theory, Control and Computing (ICSTCC), pp. 640–645, 11–13 Oct 2013
Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., Qin, B.: Learning sentiment-specific word embedding for twitter sentiment classification. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, vol. 1, pp. 1555–1565 (2014)
Neethu, M.S., Rajasree, R.: Sentiment analysis in twitter using machine learning techniques. In: 2013 Fourth International Conference on Computing, Communications and Networking Technologies (ICCCNT), pp. 1–5, 4–6 July 2013
Zhang, H., Gan, W., Jiang, B.: Machine learning and lexicon based methods for sentiment classification: a survey. In: 2014 11th Web Information System and Application Conference (WISA), pp. 262–265, 12–14 Sept 2014
WordNet-Affect. http://wndomains.fbk.eu/wnaffect.html
Strapparava, C., Valitutti, A.: WordNet affect: an affective extension of WordNet. LREC 4 (2004)
Jamoussi, S., Ameur, H.: Dynamic construction of dictionaries for sentiment classification. In: Third International Conference on Cloud and Green Computing (CGC), pp. 418–425, 30 Sept 2013–2 Oct 2013
Bosco, C., Patti, V., Bolioli, A.: Developing Corpora for sentiment analysis: the case of Irony and Senti-TUT. IEEE Intell. Syst. 28(2), 55, 63, Mar-Apr 2013
Madhoushi, Z., Hamdan, A.R., Zainudin, S.: Sentiment analysis techniques in recent works. In: Science and Information Conference (SAI), 28–30 July 2015, pp. 288–291 (2015)
Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)
Hofmann, T.: Unsupervised learning by probabilistic latent semantic analysis. Mach. Learn. 42(1–2), 177–196 (2001)
Hong, L.: Probabilistic latent semantic analysis. arXiv:1212.3900
Titov, I., McDonald, R.: Modeling online reviews with multi-grain topic models. In: Proceedings of the 17th International Conference on World Wide Web, pp. 111–120. ACM, Apr 2008
Liu, Y., Huang, X., An, A., Yu, X.: ARSA: a sentiment-aware model for predicting sales performance using blogs. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 607–614. ACM (2007)
Bagheri, A., Saraee, M., De Jong, F.: ADM-LDA: An aspect detection model based on topic modelling using the structure of review sentences. J. Inf. Sci. 40(5), 621–636 (2014)
Ding, W., Song, X., Guo, L., Xiong, Z., Hu, X.: A novel hybrid HDP-LDA model for sentiment analysis. In: International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), 2013 IEEE/WIC/ACM, pp. 329–336, 17–20 Nov 2013
Sowmiya, J.S., Chandrakala, S.: Joint sentiment/topic extraction from text. In: International Conference on Advanced Communication Control and Computing Technologies (ICACCCT), pp. 611–615, 8–10 May 2014
Usha, M.S., Indra Devi, M.: Analysis of sentiments using unsupervised learning techniques. In: International Conference on Information Communication and Embedded Systems (ICICES), pp. 241–245, 21–22 Feb 2013
Hu, X., Tang, J., Gao, H., Liu, H.: Unsupervised sentiment analysis with emotional signals. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 607–618. International World Wide Web Conferences Steering Committee, May 2013
Terrana, D., Augello, A., Pilato, G.: Automatic unsupervised polarity detection on a Twitter data stream. In: IEEE International Conference on Semantic Computing (ICSC), pp. 128–134, 16–18 June 2014
Chapelle, O., Schölkopf, B., Zien, A.: Semi-Supervised Learning. The MIT Press (2006)
Prakash, V.J., Nithya, D.L.: A Survey on Semi-Supervised Learning Techniques. arXiv:1402.4645 (2014)
Zhu,, X.: Semi-supervised learning literature survey (2008)
Yang, B.: Semi-supervised Learning for Sentiment Classification
He, Y., Zhou, D.: Self-training from labeled features for sentiment analysis. Inf. Process. Manage. 47(4), 606–616 (2011). ISSN: 0306–4573
Hong, S., Lee, J., Lee, J.-H.: Competitive self-training technique for sentiment analysis in mass social media. In: 2014 Joint 7th International Conference on and Advanced Intelligent Systems (ISIS), 15th International Symposium on Soft Computing and Intelligent Systems (SCIS), pp. 9–12, 3–6 Dec 2014
Nigam, K., McCallum, A.K., Thrun, S., Mitchell, T.: Text classification from labeled and unlabeled documents using EM. Mach. Learn. 39(2–3), 103–134 (2000)
Yang, M., Tu, W., Lu, Z., Yin, W., Chow, K.P.: LCCT: A Semi-supervised model for sentiment classification. In: The Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT), June 2015. ACL, USA (2015)
Xia, R., Wang, C., Dai, X., Li, T.: Co-training for Semi-supervised Sentiment Classification Based on Dual-view Bags-of-words Representation
Yang, Z., Liu, Z., Liu, S., Min, L., Meng, W.: Adaptive multi-view selection for semi-supervised emotion recognition of posts in online student community. Neurocomputing 144, 138–150 (2014). ISSN: 0925–2312
Hajmohammadi, M.S., Ibrahim, R., Selamat, A.: Cross-lingual sentiment classification using multiple source languages in multi-view semi-supervised learning. Eng. Appl. Artif. Intell. 36, 195–203 (2014). ISSN: 0952–1976
Lazarova, G., Koychev, I.: Semi-supervised multi-view sentiment analysis. In: Computational Collective Intelligence, pp. 181–190. Springer International Publishing (2015)
Yong, R., Nobuhiro, K., Yoshinaga, N., Kitsuregawa, M.: Sentiment classification in under-resourced languages using graph-based semi-supervised learning methods. IEICE Trans. Inf. Syst. 97(4), 790–797 (2014)
Goldberg, A.B., Zhu, X.: Seeing stars when there aren’t many stars: graph-based semi-supervised learning for sentiment categorization’. In: Proceedings of the First Workshop on Graph Based Methods for Natural Language Processing (TextGraphs-1). Association for Computational Linguistics, USA, pp. 45–52 (2006)
Lu, T.J.: Semi-supervised microblog sentiment analysis using social relation and text similarity. In: 2015 International Conference on Big Data and Smart Computing (BigComp), pp. 194–201, 9–11 Feb 2015
Balahur, A.: Sentiment analysis in social media texts. In: 4th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pp. 120–128 (2013)
Habernal, I., Ptácek, T., Steinberger, J.: Sentiment analysis in Czech social media using supervised machine learning. In: 4th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pp. 65–74 (2013)
Kouloumpis, E., Wilson, T., Moore, J.: Twitter sentiment analysis: the good the bad and the omg! In: 5th International Conference on Weblogs and Social Media, pp. 538–541 (2011)
Agarwal, A., Xie, B., Vovsha, I., Rambow, O., Passonneau, R.: Sentiment analysis of Twitter data, pp. 30–38. Workshop on Languages in Social, Media (2011)
Go, A., Bhayani, R., Huang, L.: Twitter sentiment classification using distant supervision. CS224N Project Report, pp. 1–12 (2009)
Bifet, A., Frank, E.: Sentiment knowledge discovery in Twitter streaming data. In: 3th International Conference on Discovery Science, pp. 1–15 (2010)
Zhao, J., Dong, L., Wu, J., Xu, K.: Moodlens: an emoticon-based sentiment analysis system for chinese tweets. In: 18th International Conference on Knowledge Discovery and Data Mining, pp. 1528–1531 (2012)
Ptaszynski, M., Maciejewski, J., Dybala, P., Rzepka, R., Araki, K.: CAO: a fully automatic emoticon analysis system based on theory of kinesics. IEEE Trans. Affect. Comput. 46–59 (2010)
Wikipedia. List of emoticons. Resource document. http://en.wikipedia.org/wiki/List_of_emoticons. Accessed 15 Sept 2014
NoSlang.com. Slang Dictionary—Text Slang, Internet Slang, and Abbreviations A guide to everyday acronyms and obscure abbreviations. Resource document. http://www.noslang.com/dictionary/. Accessed 15 Sept 2014
Chatslang.com. Social Media slang—Chat slang terms used in social media. Resource document. http://www.chatslang.com/terms/social_media. Accessed 15 Sept 2014
Beal, V.: Twitter dictionary: a guide to understanding Twitter Lingo. Resource document. http://www.webopedia.com/quick_ref/Twitter_Dictionary_Guide.asp. Accessed 15 Sept 2014
Roberts, K., Roach, M.A., Johnson, J., Guthrie, J., Harabagiu, S.M.: EmpaTweet: annotating and detecting emotions on Twitter. In: Language Resources and Evaluation Conference, pp. 3806–3813 (2012)
Balahur, A.: OPTWIMA: Comparing knowledge-rich and knowledge-poor approaches for sentiment analysis in short informal texts. In: The Second Joint Conference on Lexical and Computational Semantics, pp. 460–465 (2013)
Hemalatha, I., Varma, G.S., Govardhan, A.: Preprocessing the informal text for efficient sentiment analysis. Int. J. Emerg. Trends Technol. Comput. Sci. 58–61 (2012)
Serban, O., Pauchet, A., Rogozan, A., Pecuchet, J.P.: Semantic propagation of contextonyms using SentiWordNet. Resource document. http://asi.insa-rouen.fr/enseignants/apauchet/Files/Publications/WACAI12b.pdf. Accessed 15 Sept 2014
Census.gov. Resource document.http://www.census.gov/genealogy/www/data/1990surnames/dist.all.last. Accessed 15 Sept 2014
Strategic Name development. A Brand Naming Company. Resource document. http://www.namedevelopment.com/brand-names.html. Accessed 15 Sept 2014
Torunoglu, D., Eryigit, G.: A cascaded approach for social media text normalization of Turkish. In: 5th Workshop on Language Analysis for Social Media, pp. 62–70 (2014)
Han, B., Baldwin, T.: Lexical normalization of short text messages: makn sens a # Twitter. In: 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, vol. 1, pp. 368–378 (2011)
Miller, F.P., Vandome, A.F., McBrewster, J.: Levenshtein Distance. ISBN: 9786130216900
Wikipedia. List of common misspellings. Resource document. http://en.wikipedia.org/wiki/Wikipedia:Lists_of_common_misspellings. Accessed 15 Sept 2014
Stanford University. Stanford Log-linear Part-Of-Speech Tagger. Resource document. http://nlp.stanford.edu/software/tagger.shtml. Accessed 15 Sept 2014
McPherson, M., Smith-Lovin, L., Cook J.M.: Birds of a feather: homophily in social networks. Annu. Rev. Sociol. 415–444 (2001)
Lazarsfeld, P.F., Merton, R.K.: Friendship as a social process: a substantive and methodological analysis. In: Berger, M., Abel, T., Page, C.H. (eds.) Freedom and Control in Modern Society, pp. 8–66. Van Nostrand, New York (1954)
Chen, C., Gao, D., Li, W., Hou, Y.: Inferring topic-dependent influence roles of Twitter users. In: Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval (SIGIR’14). ACM, New York, NY, USA, pp. 1203–1206 (2014)
Twitaholic. Resource document: http://twitaholic.com. Accessed 15 Sept 2014
Leavitt, A., Burchard, E., Fisher, D., Gilbert, S.: The influentials: new approaches for analyzing influence on Twitter. Web Ecology project. http://www.webecologyproject.org/wpcontent/uploads/2009/09/influence-report-final.pdf (2009)
Mtibaa, A., May, M., Diot, C., Ammar, M.: PeopleRank: social opportunistic forwarding. In: INFOCOM, Proceedings IEEE, pp. 1–5, 14–19 Mar 2010
Weng, J., Lim, E.-P., Jiang, J., He: TwitterRank: finding topic-sensitive influential Twitterers. In: Proceedings of the Third ACM International Conference on Web Search and Data Mining (ACM WSDM) (2010)
Moreno, F., Gonzalez, A., Valencia, A. Computing the minimum number of new friends required in a social network to get the highest PageRank. Int. J. Complex Syst. Sci. 1, 37–42 (2012)
Deng, H., Han, J., Li, H., Ji, H., Wang, H., Lu, Y.: Exploring and inferring user-user pseudo-friendship for sentiment analysis with heterogeneous networks. Stat. Anal. Data Mining: ASA Data Sci. J. 7(4), 308–321 (2014)
Tan, C., Lee, L., Tang, J., Jiang, L., Zhou, M., Li, P.: User-level sentiment analysis incorporating social networks. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’11). ACM, New York, NY, USA, pp. 1397–1405 (2011)
Hu, X., Tang, L., Tang, J., Liu. H.: Exploiting social relations for sentiment analysis in microblogging. In: Proceedings of the Sixth ACM International Conference on Web Search and Data Mining (WSDM’13). ACM, New York, NY, USA, pp. 537–546 (2013)
Ahsan, M., Singh, T., Kumari, M.: Influential node detection in social network during community detection. In: International Conference on Cognitive Computing and Information Processing (CCIP), pp. 1–6, 3–4 Mar 2015
Zhang, J., Ma, X., Liu, W., Bai, Y.: Inferring community members in social networks by closeness centrality examination. In: 2012 Ninth Web Information Systems and Applications Conference (WISA), pp. 131–134, 16–18 Nov 2012
Bermingham, A., Conway, M., McInerney, L., O’Hare, N., Smeaton, A.F.: Combining social network analysis and sentiment analysis to explore the potential for online radicalisation. In: Proceedings of the 2009 International Conference on Advances in Social Network Analysis and Miningi, IEEE Computer Society, Washington, DC, USA, pp. 231–236 (2009)
Mei, Y., Zhong, Y., Yang, J.: Finding and analyzing principal features for measuring user influence on Twitter. In: 2015 IEEE First International Conference on Big Data Computing Service and Applications (BigDataService), pp. 478–486, 30 Mar 2015–2 Apr 2015
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Benedetto, F., Tedeschi, A. (2016). Big Data Sentiment Analysis for Brand Monitoring in Social Media Streams by Cloud Computing. In: Pedrycz, W., Chen, SM. (eds) Sentiment Analysis and Ontology Engineering. Studies in Computational Intelligence, vol 639. Springer, Cham. https://doi.org/10.1007/978-3-319-30319-2_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-30319-2_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-30317-8
Online ISBN: 978-3-319-30319-2
eBook Packages: EngineeringEngineering (R0)