Skip to main content

Convection

  • Chapter
  • First Online:
Digital Simulation in Electrochemistry

Part of the book series: Monographs in Electrochemistry ((MOEC))

  • 1616 Accesses

Abstract

Convection has long been coupled with electrochemistry, and the name hydrodynamic voltammetry has become standard. The standard work is the book by Levich [1] although he did not use that term. In electroanalytical chemistry we mainly seek reproducible conditions. These are almost always attained by systems in which a steady convective state is achieved, although not always. Thus, the once popular dropping mercury electrode (see texts such as [2, 3]) has convection around it, but is never in steady state; it might be called a reproducible periodic dynamic state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levich VG (1962) Physicochemical hydrodynamics. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  2. Bard AJ, Faulkner LR (2001) Electrochemical methods. Wiley, New York

    Google Scholar 

  3. Galus Z (1994) Fundamentals of electrochemical analysis, 2nd edn. Ellis Horwood, New York (trans: Chalmers RA, Bryce WAJ (eds))

    Google Scholar 

  4. Bird RB, Stewart WE, Lightfoot EN (1960) Transport phenomena. Wiley, New York

    Google Scholar 

  5. Schlichting H (1965) Grenzschicht-Theorie. G. Braun, Karlsruhe

    Google Scholar 

  6. Sreenivasan KR (1982) Laminarescent, relaminarizing and retransitional flows. Acta Mech 44:1–48

    Article  Google Scholar 

  7. Willis AP, Kerswell RR (2007) Critical behavior in the relaminarization of localized turbulence in pipe flow. Phys Rev Lett 98:014501-1–014501-4

    Google Scholar 

  8. Aoki K, Tokuda K, Matsuda H (1977) Hydrodynamic voltammetry at channel electrodes. Part I. Catalytic currents. J Electroanal Chem 76:217–233

    Article  CAS  Google Scholar 

  9. Aoki K, Tokuda K, Matsuda H (1977) Hydrodynamic voltammetry at channel electrodes. Part II. Theory of first-order kinetic collection efficiencies. J Electroanal Chem 79:49–78

    CAS  Google Scholar 

  10. Cope DK, Tallman DE (1986) Calculation of convective-diffusion current at multiple strip electrodes in a rectangular flow channel. Implications for electrochemical detection. J Electroanal Chem 205:101–123

    CAS  Google Scholar 

  11. Gerischer H, Mattes I, Braun R (1965) Elektrolyse im Strömungskanal. Ein Verfahren zur Untersuchung von Reaktions- und Zwischenprodukten. J Electroanal Chem 10:553–567

    CAS  Google Scholar 

  12. Matsuda H (1968) Zur Theorie der Elektrolyse mit zwei eng benachbarten Elektroden in Strömungsanordnungen. Allgemeine Formel für die Übertragungsausbeute. J Electroanal Chem 16:153–164

    CAS  Google Scholar 

  13. Tokuda K, Aoki K, Matsuda H (1977) Hydrodynamic voltammetry at channel electrodes. Part III. Theory of kinetic currents. J Electroanal Chem 80:211–222

    CAS  Google Scholar 

  14. Zhang W, Stone HA, Sherwood JD (1996) Mass transfer at a microelectrode in channel flow. J Phys Chem 100:9462–9464

    Article  CAS  Google Scholar 

  15. Kay JM, Nedderman RM (1974) An introduction to fluid mechanics and heat transfer, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  16. Schmidt FW, Zeldin B (1969) Laminar flows in inlet sections of tubes and ducts. AIChE J 15:612–614

    Article  CAS  Google Scholar 

  17. Prandtl L, Tietjens OG (1934) Applied hydro- and aerodynamics. Dover, New York

    Google Scholar 

  18. Glauert MB (1956) The wall jet. J Fluid Mech 1:625–643

    Article  Google Scholar 

  19. Albery WJ, Brett CMA (1983) The wall-jet ring-disc electrode Part I. Theory. J Electroanal Chem 148:201–210

    Article  CAS  Google Scholar 

  20. Yamada J, Matsuda H (1973) Limiting diffusion currents in hydrodynamic voltammetry. III. Wall jet electrodes. J Electroanal Chem 44:189–198

    Article  CAS  Google Scholar 

  21. Laevers P, Hubin A, Terryn H, Vereecken J (1995) A wall-jet electrode reactor and its application to the study of electrode reaction mechanisms. Part I: design and construction. J Appl Electrochem 25:1017–1022

    CAS  Google Scholar 

  22. Shukla PK, Orazem ME (2004) Hydrodynamics and mass-transfer-limited current distribution for a submerged stationary hemispherical electrode under jet impingement. Electrochim Acta 49:2901–2908

    Article  CAS  Google Scholar 

  23. Varadi M, Pungor E (1975) Turbulent hydrodynamic voltammetry. I. Distribution of voltammetric current on electrode surfaces. Anal Chim Acta 80:31–37

    Article  CAS  Google Scholar 

  24. Varadi M, Gratzl M, Pungor E (1976) Turbulent hydrodynamic voltammetry. II. Turbulence frequency studies in a hydrodynamic voltammetric cell. Magy Kem Foly 82:335–338 (in Hungarian)

    CAS  Google Scholar 

  25. von Kármán T (1921) Über laminare und turbulente Reibung. Z Angew Math Mech 1:233–252

    Article  Google Scholar 

  26. Cochran WG (1934) The flow due to a rotating electrode. Proc Camb Philos Soc 30:365–375

    Article  Google Scholar 

  27. Sparrow EM, Gregg JL (1959) Heat transfer from a rotating disk to fluids of any Prandtl number. J Heat Transf 81C:249–252

    Google Scholar 

  28. Gregory DP, Riddiford AC (1956) Transport to the surface of a rotating disc. J Chem Soc 3756–3764

    Google Scholar 

  29. Amatore C, Pebay C, Thouin L, Wang A (2009) Cyclic voltammetry at microelectrodes. Influence of natural convection on diffusion layers as characterized by in situ mapping of concentration profiles. Electrochem Commun 11:1269–1272

    Article  CAS  Google Scholar 

  30. Amatore C, Klymenko OV, Svir I (2012) Importance of correct prediction of initial concentrations in voltammetric scans: contrasting roles of thermodynamics, kinetics, and natural convection. Anal Chem 84:2792–2798

    Article  CAS  Google Scholar 

  31. Dolgikh O, Demeter AS, Bastos AC, Topa V, Deconinck J (2013) A practical way to model convection in non-agitated electrolytes. Electrochem Commun 37:20–23

    Article  CAS  Google Scholar 

  32. Pebay C, Sella C, Thouin L, Amatore C (2013) Mass transport at infinite regular arrays of electrodes submitted to natural convection: theory and experiments. Anal Chem 85:12062–12069

    Article  CAS  Google Scholar 

  33. Shorygin AP, Danielyan GL (1978) Numerical simulation of electrochemical processes with free convection. Electrochim Acta 23:1227–1231

    Article  CAS  Google Scholar 

  34. Volgin VM, Volgina OV, Bograchev DA, Davydov AD (2003) Simulation of ion transfer under conditions of natural convection by the finite difference method. J Electroanal Chem 546:15–22

    Article  CAS  Google Scholar 

  35. Volgin VM, Davydov AD (2010) Numerical simulation of natural convection of electrolyte solution with three types of ions in the electrochemical cell with vertical electrodes. Russ J Electrochem 46:1360–1372

    Article  CAS  Google Scholar 

  36. Vielstich W (1953) Der Zusammenhang zwischen Nernstscher Diffusionsschicht und Prandtlscher Strömungsgrenzschicht. Z Elektrochem 57:646–655

    CAS  Google Scholar 

  37. Bernstein C, Heindrichs A, Vielstich W (1978) Investigations of fast electrode processes by means of a micro-ring electrode in turbulent pipe flow. J Electroanal Chem 87:81–90

    Article  CAS  Google Scholar 

  38. Flanagan JB, Marcoux L (1974) Digital simulation of tubular electrode response in stationary and flowing solution. J Phys Chem 78:718–723

    Article  CAS  Google Scholar 

  39. Kader BA (1977) Structure of the concentration field near the leading edge of electrochemical mass transfer probes. Sov Electrochem 13:417–423

    Google Scholar 

  40. Wu Y, Wang Z (1999) The theoretical behaviors of tubular electrodes: from semi-infinite diffusion to bulk electrolysis. Electrochim Acta 44:2281–2286

    Article  CAS  Google Scholar 

  41. Albery WJ (1966) Ring-disk electrodes. Part 1 - a new approach to the theory. Trans Faraday Soc 62:1915–1919

    Article  CAS  Google Scholar 

  42. Albery WJ, Bruckenstein S (1966) Ring-disk electrodes. Part 2 - theoretical and experimental collection efficiencies. Trans Faraday Soc 62:1920–1931

    Article  CAS  Google Scholar 

  43. Albery WJ, Bruckenstein S, Napp DT (1966) Ring-disk electrodes. Part 3 - current-voltage curves at the ring electrode with simultaneous currents at the disc electrode. Trans Faraday Soc 62:1932–1937

    Article  CAS  Google Scholar 

  44. Albery WJ, Bruckenstein S, Johnson DC (1966) Ring-disk electrodes. Part 4 - diffusion layer titration curves. Trans Faraday Soc 62:1938–1945

    Article  CAS  Google Scholar 

  45. Albery WJ, Bruckenstein S (1966) Ring-disk electrodes. Part 5 - first-order kinetic collection efficiencies at the ring electrode. Trans Faraday Soc 62:1946–1954

    Article  CAS  Google Scholar 

  46. Albery WJ, Jones CC, Mount AR (1989) New hydrodynamic methods. In: Compton RG, Hancock G (eds) Comprehensive chemical kinetics, vol 29. Elsevier, Amsterdam, pp 129–148

    Google Scholar 

  47. Penar J (1991/1992) Application of the rotating disc and ring-disc electrodes for investigations of the kinetics and of mechanism of electrode reactions. Theoretical basis. Ann Univ Marie Curie-Skłodowska Lublin-Polonia 46/47:119–172 (in Polish)

    Google Scholar 

  48. Williams DE, MacPherson J (1999) Hydrodynamic modulation methods in electrochemistry. In: Compton RG, Hancock G (eds) Comprehensive chemical kinetics, vol 37. Elsevier, Amsterdam, pp 369–438

    Google Scholar 

  49. Ang KP, Gunasingham H, Tay BT (1987) Cyclic voltammetry of some quinones and nitro-aromatic compounds using a mercury film wall-jet detector and flow injection analysis. J Singapore Natl Acad Sci 16:80–86

    CAS  Google Scholar 

  50. Frumkin A, Nekrasov L, Levich B, Ivanov J (1959/60) Die Anwendung der rotierenden Scheibenelektrode mit einem Ringe zur Untersuchung von Zwischenprodukten electrochemischer Reaktionen. J Electroanal Chem 1:84–90

    Google Scholar 

  51. Banks CE, Compton RG, Fisher AC, Henley IE (2004) The transport limited currents at insonated electrodes. Phys Chem Chem Phys 6:3147–3152

    Article  CAS  Google Scholar 

  52. Baleras F, Bouet V, Deslouis C, Maurin G, Sobolik V, Tribollet B (1996) Flow measurement in an impinging jet cell with three-segment microelectrodes. Exp Fluids 22:87–93

    Article  CAS  Google Scholar 

  53. Bartolini R, Fantini L, Gallone P (1976) Fluid velocity measurements by the electrochemical method. Ann Chim (Rome) 66:7–18

    CAS  Google Scholar 

  54. Mizushina T (1971) The electrochemical method in transport phenomena. Adv Heat Mass Transf 7:87–161

    CAS  Google Scholar 

  55. Kermiche-Aouanouk F, Daguenet M (1972) Theorie des dimicroéléctrodes. J Chim Phys Physicochim Biol 69:1705–1710 (in French)

    CAS  Google Scholar 

  56. Bruckenstein S, Johnson DC (1964) Coulometric diffusion layer titrations using the ring-disk electrode with amperometric end point detection. Anal Chem 36:2186–2187

    Article  CAS  Google Scholar 

  57. Rajantie H, Strutwolf J, Williams DE (2001) Theory and practice of electrochemical titrations with dual microband electrodes. J Electroanal Chem 500:108–120

    Article  CAS  Google Scholar 

  58. Basak J, Penar J, Sykut K (1987/1988) Digital simulation for determining rate constants in diffusion layer titration on the rotating ring disc electrode. Part II. Second order reactions. Ann Univ Mariae Curie - Skłodowska, Sectio AA XLII/XLIII:43–49

    Google Scholar 

  59. van Leeuwen HP, de Jong HG, Holub K (1989) Voltammetry of metal complex systems with different diffusion coefficients of the species involved. Part IV. Simulation of the limiting current for any metal-to-ligand ratio and elaboration to voltammetric titration curves. J Electroanal Chem 260:213–220

    Google Scholar 

  60. Svir IB, Oleinick AI, Compton RG (2003) Dual microband electrodes: current distributions and diffusion layer ‘titrations’. Implications for electroanalytical measurements. J Electroanal Chem 560:117–126

    Article  CAS  Google Scholar 

  61. Arkoub IA, Amatore C, Sella C, Thouin L, Warkocz JS (2001) Diffusion at double microband electrodes operated within a thin film coating. Theory and experimental illustration. J Phys Chem B 105:8694–8703

    CAS  Google Scholar 

  62. Harrington MS, Anderson LB (1990) Analytical strategies using interdigitated filar microelectrodes. Anal Chem 62:546–550

    Article  CAS  Google Scholar 

  63. Postlethwaite TA, Hutchinson JE, Murray R, Fosset B, Amatore C (1996) Interdigitated array electrodes as an alternative to the rotating ring-disk electrode for determination of the reaction products of dioxygen reduction. Anal Chem 68:2951–2958

    Article  CAS  Google Scholar 

  64. Seddon BJ, Girault HH, Eddowes MJ (1989) Interdigitated microband electrodes: chronoamperometry and steady state currents. J Electroanal Chem 266:227–238

    Article  CAS  Google Scholar 

  65. Svir IB, Klimenko AV, Compton RG (2001) The simulation of convective diffusion transport of matter to a channel double microband electrode and its application to electrogenerated chemiluminescence. Radiotekhnika 118:92–101

    Google Scholar 

  66. Amatore C (1995) Electrochemistry at ultramicroelectrodes. In: Rubinstein I (ed) Physical electrochemistry. Marcel Dekker, New York, pp 131–208

    Google Scholar 

  67. Britz D, Kastening B (1974) On the electrochemical observation of a second-order decay of radicals generated by flash photolysis or pulse radiolysis. J Electroanal Chem 56:73–90

    Article  CAS  Google Scholar 

  68. Feldberg SW (1969) Digital simulation: a general method for solving electrochemical diffusion-kinetic problems. In: Bard AJ (ed) Electroanalytical chemistry, vol 3. Marcel Dekker, New York, pp 199–296

    Google Scholar 

  69. Feldberg SW (1980) Improvements on computer simulation of electrochemical phenomena involving hydrodynamics: the rotating disk and dropping mercury electrode. J Electroanal Chem 109:69–82

    CAS  Google Scholar 

  70. Ružić I, Smith DE (1974) On the influence of electrode curvature and growth in d.c. and a.c. polarography: the e.e. mechanism with amalgam formation. J Electroanal Chem 57:129–139

    Article  Google Scholar 

  71. Prater KB, Bard AJ (1970) Rotating ring-disk electrodes. 1. Fundamentals of the digital simulation approach. Disk and ring transients and collection efficiencies. J Electrochem Soc 117:207–213

    Article  CAS  Google Scholar 

  72. Prater KB, Bard AJ (1970) Rotating ring-disk electrodes. II Digital simulation of first and second-order following chemical reactions. J Electrochem Soc 117:335–340

    CAS  Google Scholar 

  73. Prater KB (1972) Digital simulation and modelling. Chem Instrum 3:259–269

    Article  CAS  Google Scholar 

  74. Margarit J, Lévy M (1974) Étude theéoretique d’une électrode tournante á double anneau. Partie I. Recherche du facteur d’efficacité par une méthode de simulation numérique. J Electroanal Chem 49:369–376

    CAS  Google Scholar 

  75. Margarit J, Dabosi G, Lévy M (1975) Étude d’une électrode tournante á double anneau. Partie II. Vérification expérimentale des resultats obtenus par voie de simulation numérique. Bull Soc Chim Fr 7–8:1509–1512

    Google Scholar 

  76. Clarenbach S, Grabner EW, Brauer E (1973) Digital simulation of a rotating double-ring-electrode. Ber Bunsenges Phys Chem 77:908–913

    CAS  Google Scholar 

  77. Clarenbach S, Grabner EW (1976) Application of digital simulation to a mass transport problem: calculation of the velocity of flow at a rotating disk. Ber Bunsenges Phys Chem 80:115–121

    Article  Google Scholar 

  78. Mandin P, Pauporte T, Fanouillère P, Lincot D (2004) Modelling and numerical simulation of hydrodynamical processes in a confined rotating electrode configuration. J Electroanal Chem 565:159–173

    Article  CAS  Google Scholar 

  79. Feldberg SW, Bowers ML, Anson FC (1986) Hopscotch-finite-difference simulation of the rotating ring-disc electrode. J Electroanal Chem 215:11–28

    Article  CAS  Google Scholar 

  80. Nolan JE, Plambeck JA (1990) The EC-catalytic mechanism at the rotating disk electrode. Part II. Comparison of approximate theories for the second-order case and application to the reaction of bipyridinium cation radicals with dioxygen in non-aqueous solutions. J Electroanal Chem 294:1–20

    CAS  Google Scholar 

  81. Balslev H, Britz D (1992) Direct digital simulation of the steady-state limiting current at a rotating disk electrode for a complex mechanism. Acta Chem Scand 46:949–955

    Article  CAS  Google Scholar 

  82. Dan C, Van den Bossche B, Bortels L, Nelissen G, Deconinck J (2001) Numerical simulation of transient current responses in diluted electrochemical ionic systems. J Electroanal Chem 505:12–23

    Article  CAS  Google Scholar 

  83. Strutwolf J (1995) Digitale Simulation elektrochemischer Systeme: Untersuchungen zeitabhängiger Phänomene an rotierenden Scheibenelektroden und Analyse von Cyclovoltammogrammen durch direkte Simulation. Ph.D. thesis, Universität Bielefeld, Bielefeld

    Google Scholar 

  84. Strutwolf J, Schoeller WW (1996) Linear and cyclic sweep voltammetry at a rotating disk electrode. A digital simulation. Electroanalysis 8:1034–1039

    CAS  Google Scholar 

  85. Gooch KA, Fisher AC (2002) Computational electrochemistry: the simulation of voltammetry under hydrodynamic modulation control. J Phys Chem B 106:10668–10673

    Article  CAS  Google Scholar 

  86. Gooch KA, Qiu FL, Fisher AC (2003) The digital simulation of voltammetry under stagnant and hydrodynamic conditions. In: Bard AJ, Stratmann M, Unwin PR (eds) Encyclopaedia of electrochemistry, volume 2, Instrumentation and electroanalytical chemistry. Wiley-VCH, Weinheim, pp 122–142

    Google Scholar 

  87. Albery WJ, Chadwick AT, Coles BA, Hampson NA (1977) The tube electrode and E.S.R.: second order kinetics. J Electroanal Chem 75:229–239

    Article  CAS  Google Scholar 

  88. Albery WJ, Compton RG, Chadwick AT, Coles BA, Lenkaits JA (1980) Tube electrode and electron spin resonance. First-order kinetics. J Chem Soc Faraday Trans I 76:1391–1401

    Article  CAS  Google Scholar 

  89. Andersen JL, Moldoveanu S (1984) Numeral simulation of convective diffusion at a rectangular channel flow electrode. J Electroanal Chem 179:107–117

    Article  Google Scholar 

  90. Compton RG, Pilkington MBG, Stearn GM (1988) Mass transport in channel electrodes. The application of the backwards implicit method to electrode reactions (EC, ECE and DISP) involving coupled homogeneous kinetics. J Chem Soc Faraday Trans I 84:2155–2171

    Article  CAS  Google Scholar 

  91. Compton RG, Fisher AC, Latham MH, Brett CMA, Brett AMCFO (1992) Transient measurements at the wall-jet ring disc electrode. J Appl Electrochem 22:1011–1016

    Article  CAS  Google Scholar 

  92. Compton RG, Coles BA, Fisher AC (1994) Chronoamperometry at channel electrodes. Theory of double electrodes. J Phys Chem 98:2441–2445

    CAS  Google Scholar 

  93. Compton RG, Coles BA, Gooding JJ, Fisher AC (1994) Chronoamperometry at channel electrodes. Experimental applications of double electrodes. J Phys Chem 98:2446–2451

    CAS  Google Scholar 

  94. Fletcher CAJ (1991) Computational techniques for fluid dynamics, vol I, 2nd edn. Springer, Berlin

    Google Scholar 

  95. Strikwerda JC (1989) Finite difference schemes and partial differential equations. Wadsworth and Brooks/Cole, Pacific Grove, CA

    Google Scholar 

  96. Alhumaizi K (2004) Comparison of finite difference methods for the numerical simulation of reacting flow. Comput Chem Eng 28:1759–1769

    Article  CAS  Google Scholar 

  97. Alden JA, Compton RG (1996) Hydrodynamic voltammetry with channel microband electrodes: axial diffusion effects. J Electroanal Chem 404:27–35

    Article  Google Scholar 

  98. Alden JA, Cooper JA, Hutchinson F, Prieto F, Compton RG (1997) Channel electrode voltammetry and reversible electro-dimerisation processes. The reduction of the methyl-viologen di-cation in aqueous solution. J Electroanal Chem 432:63–70

    Google Scholar 

  99. Alden JA, Feldman MA, Hill E, Prieto F, Oyama M, Coles BA, Compton RG (1998) Channel microband electrode arrays for mechanistic electrochemistry. Two-dimensional voltammetry: transport-limited currents. Anal Chem 70:1707–1720

    Article  CAS  Google Scholar 

  100. Amatore C, Oleinick A, Svir I (2004) Simulation of diffusion-convection processes in microfluidic channels equipped with double-band microelectrode assemblies: approach through quasi-conformal mapping. Electrochem Commun 6:1123–1130

    Article  CAS  Google Scholar 

  101. Amatore C, Da Mota N, Lemmer C, Pebay C, Sella C, Thouin L (2008) Theory and experiments of transport at channel microband electrodes under laminar flows. 2. Electrochemical regimes at double microband assemblies under steady state. Anal Chem 80:9483–9490

    Article  CAS  Google Scholar 

  102. Amatore C, Lemmer C, Sella C, Thouin L (2011) Channel microband chronoamperometry: from transient to steady-state regimes. Anal Chem 83:4170–4177

    Article  CAS  Google Scholar 

  103. Amatore C, Lemmer C, Perrodin P, Sella C, Thouin L (2011) Theory and experiments of microelectrodes performing as concentration probes within microfluidic channels with high temporal resolution. Electrochem Commun 13:1459–1461

    Article  CAS  Google Scholar 

  104. Bidwell MJ, Alden JA, Compton RG (1996) Channel microband electrodes: a complete working surface for potential step transients. J Electroanal Chem 414:247–251

    Google Scholar 

  105. Bidwell MJ, Alden JA, Compton RG (1996) Hydrodynamic voltammetry with channel microband electrodes: the simulation of voltammetric waveshapes. J Electroanal Chem 417:119–128

    Article  CAS  Google Scholar 

  106. Bidwell MJ, Alden JA, Compton RG (1997) Electroanalysis in flowing systems - the propagation of depletion effects downstream of a channel micro-band electrode. Electroanalysis 9:383–389

    Article  CAS  Google Scholar 

  107. Bieniasz LK (2013) Automatic solution of the Singh and Dutt integral equations for channel or tubular electrodes, by the adaptive Huber method. J Electroanal Chem 693:95–104

    Article  CAS  Google Scholar 

  108. Bortels L, Deconinck J, Bossche BVD (1996) The multi-dimensional upwinding method as a new simulation tool for the analysis of multi-ion electrolytes controlled by diffusion, convection and migration. Part 1. Steady state analysis of a parallel plane flow channel. J Electroanal Chem 404:15–26

    Article  Google Scholar 

  109. Cooper JA, Alden JA, Oyama M, Compton RG, Okazaki S (1998) Channel electrode voltammetry: the kinetics of the complexation of the chloranil radical anion with M 2+ ions by waveshape analysis. J Electroanal Chem 442:201–206

    Article  CAS  Google Scholar 

  110. Cooper JA, Compton RG (1998) Channel electrodes - a review. Electroanalysis 10:141–155

    Article  CAS  Google Scholar 

  111. Ferrigno R, Brevet PF, Girault HH (1997) Finite element simulation of the amperometric response of recessed and protruding microband electrodes in flow channels. J Electroanal Chem 430:235–242

    Article  CAS  Google Scholar 

  112. Fisher AC, Compton RG (1991) Chronoamperometry at channel electrodes: a general computational approach. J Phys Chem 95:7538–7542

    Article  CAS  Google Scholar 

  113. Fisher AC, Compton RG (1992) A general computational approach to linear sweep voltammetry at channel electrodes. J Appl Electrochem 22:38–42

    Article  CAS  Google Scholar 

  114. Fisher AC, Compton RG (1992) The EC’ mechanism: split waves at the channel electrode. Electroanalysis 4:311–315

    Article  CAS  Google Scholar 

  115. Fuhrmann J, Zhao H, Holzbecher E, Langmach H, Chojak M, Halseid R, Jusys Z, Behm J (2008) Experimental and numerical model study of the limiting current in a channel flow cell with a circular electrode. Phys Chem Chem Phys 10:3784–3795

    Article  CAS  Google Scholar 

  116. Fulian Q, Stevens NPC, Fisher AC (1998) Computer-aided design and experimental application of a novel electrochemical cell: the confluence reactor. J Phys Chem B 102:3779–3783

    Article  Google Scholar 

  117. Fulian Q, Fisher AC, Riley DJ (2000) The computer aided design and experimental development of a new device for the measurement of electrochemiluminescence. Electroanalysis 12:503–508

    Article  CAS  Google Scholar 

  118. Gooch KA, Williams NA, Fisher AC (2000) The computer-aided design of a new hydrodynamic device for studying mechanisms of chemical transfer across the liquid—liquid interface. Electrochem Commun 2:51–55

    Article  CAS  Google Scholar 

  119. Harriman K, Gavaghan DJ, Houston P, Süli E (2000) Adaptive finite element simulation of currents at microelectrodes to a guaranteed accuracy. An E reaction at a channel microband electrode. Electrochem Commun 2:567–575

    Article  CAS  Google Scholar 

  120. Henstridge MC, Rees NV, Compton RG (2012) A comparison of the Butler-Volmer and asymmetric Marcus-Hush models of electrode kinetics at the channel electrode. J Electroanal Chem 687:79–83

    Article  CAS  Google Scholar 

  121. Holm T, Sunde S, Seland F, Harrington DA (2015) A semianalytical method for simulating mass transport at channel electrodes. J Electroanal Chem 745:72–79

    Article  CAS  Google Scholar 

  122. Klymenko OV, Oleinick AI, Amatore C, Svir I (2007) Reconstruction of hydrodynamic flow profiles in a rectangular channel using electrochemical methods of analysis. Electrochim Acta 53:1100–1106

    Article  CAS  Google Scholar 

  123. Leslie WM, Alden JA, Compton RG, Silk T (1996) ECE and DISP processes at channel electrodes: analytical theory. J Phys Chem 100:14130–14136

    Article  CAS  Google Scholar 

  124. Ma S, Wu Y, Wang Z (1999) Spectroelectrochemistry for a coupled chemical reaction in the channel cell. Part I. Theoretical simulation of an EC reaction. J Electroanal Chem 464:176–180

    CAS  Google Scholar 

  125. Miles AB, Compton RG (2001) Simulation of square-wave voltammetry at a channel electrode: E, EC and ECE processes. J Electroanal Chem 499:1–16

    Article  CAS  Google Scholar 

  126. Moldoveanu S, Anderson JL (1985) Numerical simulation of convective diffusion at a microarray channel electrode. J Electroanal Chem 185:239–252

    Article  CAS  Google Scholar 

  127. Ou TY, Moldoveanu S, Anderson JL (1988) Hydrodynamic voltammetry at an interdigitated electrode array in a flow channel. Part II. Chemical reaction succeeding electron transfer. J Electroanal Chem 247:1–16

    CAS  Google Scholar 

  128. Pastore P, Magno F, Lavagnini I, Amatore C (1991) Digital simulation via the hopscotch algorithm of a microelectrode-based channel flow-through amperometric detector. J Electroanal Chem 301:1–13

    Article  CAS  Google Scholar 

  129. Prieto F, Aixill WJ, Alden JA, Coles BA, Compton RG (1997) Voltammetry under high mass transport conditions. The high-speed channel electrode and transient measurements. J Phys Chem B 101:5540–5544

    CAS  Google Scholar 

  130. Prieto F, Oyama M, Coles BA, Alden JA, Compton RG, Okazaki S (1998) Mechanistic determination using arrays of variable sized channel microband electrodes. The oxidation of 2,3,7,8-tetra-methoxythianthrene in the presence of pyridine in acetonitrile solution. Electroanalysis 10:685–690

    Article  CAS  Google Scholar 

  131. Qiu F, Compton RG, Coles BA, Marken F (2000) Thermal activation of electrochemical processes in a Rf-heated channel flow cell: experiment and finite element simulation. J Electroanal Chem 492:150–155

    Article  CAS  Google Scholar 

  132. Rajendran L (2000) Padé approximation of ECE and DISP processes at channel electrodes. Electrochem Commun 2:186–189

    Article  CAS  Google Scholar 

  133. Rajendran L (2000) Padé approximation of EC’ processes at channel electrodes. J Electroanal Chem 487:72–74

    Article  CAS  Google Scholar 

  134. Rajendran L (2006) Two-point Padé approximation of mass transfer rate at microdisk electrodes in a channel flow for all Péclet numbers. Electrochim Acta 51:5407–5411

    Article  CAS  Google Scholar 

  135. Rees NV, Klymenko OV, Maisonhaute E, Coles BA, Compton RG (2003) The application of fast scan cyclic voltammetry to the high speed channel electrode. J Electroanal Chem 542:23–32

    Article  CAS  Google Scholar 

  136. Somov SI, Brainin MI, Baraboshkin DA (1996) Mass transfer in gas channels of electrochemical cells based on solid-oxide electrolyte at small concentrations of electrochemically active components in the gas: II. Results of numerical calculations. Russ J Electrochem 32:1103–1107

    CAS  Google Scholar 

  137. Stevens NPC, Fisher AC (1998) Transient voltammetry under hydrodynamic conditions. Electroanalysis 10:16–20

    Article  CAS  Google Scholar 

  138. Svir IB, Klimenko AV, Compton RG (2000) Two approaches for digital simulation of the channel flow cell problem. Radioelek Informatika 2:29–33

    Google Scholar 

  139. Tait RJ, Bury PC, Finnin BC, Reed B, Bond AM (1993) An explicit finite difference simulation for chronoamperometry at a disk microelectrode in a channel flow solution. J Electroanal Chem 356:25–42

    Article  CAS  Google Scholar 

  140. Ueno K, Kim HB, Kitamura N (2003) Characteristic electrochemical responses of polymer microchannel-microelectrode chips. Anal Chem 75:2086–2091

    Article  CAS  Google Scholar 

  141. Unwin PR, Compton RG (1989) The use of channel electrodes in the investigation of interfacial reaction mechanisms. In: Compton RG, Hancock G (eds) Comprehensive chemical kinetics, vol 29. Elsevier, Amsterdam, pp 173–296

    Google Scholar 

  142. Engblom SO, Cope DK, Tallman DE (1996) Diffusion current at the tubular band electrode by the integral equation method. J Electroanal Chem 406:23–31

    Article  Google Scholar 

  143. Lovrić M, Kormorsky-Lovrić Š, Kahlert H, Scholz F (2007) A model of mass transport near the tube wall in a flow-injection manifold. Anal Chim Acta 602:75–81

    Article  CAS  Google Scholar 

  144. Singh T, Singh RP (2000) Linear sweep voltammetry of irreversible charge transfer coupled with irreversible catalytic reaction under diffusion-convection control: an integral equation approach. Indian J Pure Appl Math 31:363–374

    Google Scholar 

  145. Alden JA, Hakoura S, Compton RG (1999) Finite difference simulations of steady-state voltammetry at the wall-jet electrode. Effects of radial diffusion and working curves for common electrochemical mechanisms. Anal Chem 71:827–836

    Article  CAS  Google Scholar 

  146. Ball JC, Compton RG, Brett CMA (1998) Theory of anodic stripping voltammetry at wall-jet electrodes. Simulation of spatially differential stripping and redeposition phenonema. J Phys Chem B 102:162–166

    CAS  Google Scholar 

  147. Bitziou E, Rudd NC, Edwards MA, Unwin PR (2006) Visualization and modeling of the hydrodynamics of an impinging microjet. Anal Chem 78:1435–1443

    Article  CAS  Google Scholar 

  148. Bitziou E, Rudd NC, Unwin PR (2007) Microjet ring electrode (MJRE): development, modelling and experimental characterisation. J Electroanal Chem 602:263–274

    Article  CAS  Google Scholar 

  149. Coles BA, Compton RG, Brett CMA, Brett AMCFO (1995) Ohmic distortion of current-potential curves at wall-jet electrodes. J Electroanal Chem 381:99–104

    Article  Google Scholar 

  150. Compton RG, Greaves CR, Waller AM (1990) A general computation method for mass-transport problems involving wall-jet electrodes and its application to simple electron-transfer, ECE and DISP1 reactions. J Appl Electrochem 20:575–585

    Article  CAS  Google Scholar 

  151. Compton RG, Greaves CR, Waller AM (1990) The wall-jet electrode and its application to the study of electrode reactions with the coupled homogeneous kinetics: the DISP1 reaction. J Appl Electrochem 20:586–589

    Article  CAS  Google Scholar 

  152. Compton RG, Fisher A, Tyley GP (1990) The wall-jet electrode and the study of electrode reaction mechanisms: the EC reaction. J Appl Electrochem 20:912–915

    Article  CAS  Google Scholar 

  153. Compton RG, Fisher AC, Tyley GP (1991) The wall-jet electrode and the study of electrode reaction mechanisms: the EC’ (catalytic) reaction. J Appl Electrochem 21:2–5

    Article  CAS  Google Scholar 

  154. Compton RG, Fisher AC, Latham MH, Wellington RG, Brett CMA, Brett AMCFO (1993) Wall-jet electrodes: the importance of radial diffusion. J Appl Electrochem 23:98–102

    CAS  Google Scholar 

  155. Fisher AC, Compton RG, Brett CMA, Brett AMCF (1991) The wall-jet electrode. Potential step chronoamperometry. J Electroanal Chem 318:53–59

    CAS  Google Scholar 

  156. Klymenko OV, Gavaghan DJ, Harriman KE, Compton RG (2002) Finite element simulation of electrochemically reversible, quasireversible and irreversible linear sweep voltammetry at the wall tube electrode. J Electroanal Chem 531:25–31

    Article  CAS  Google Scholar 

  157. Laevers P, Hubin A, Terryn H, Vereecken J (1995) A wall-jet electrode reactor and its application to the study of electrode reaction mechanisms. Part II: a general computational method for the mass transport problems involved. J Appl Electrochem 25:1023–1030

    CAS  Google Scholar 

  158. Melville J, Simjee N, Unwin PR, Coles B, Compton RG (2002) Hydrodynamics and mass transport in wall tube and microjet electrodes. 1. Finite element simulations. J Phys Chem B 106:2690–2698

    Article  CAS  Google Scholar 

  159. Compton RG, Dryfe RAW, Wellington RG, Hirst J (1995) Modelling electrode reactions using the strongly implicit procedure. J Electroanal Chem 383:13–19

    Article  Google Scholar 

  160. Matsuda H (1967) Zur Theorie der stationären Strom-Spannungs-Kurven von Redox-Elektrodenreaktionen in hydrodynamischer Voltammetrie. II. Laminare Rohr- und Kanalströmungen. J Electroanal Chem 15:325–336

    CAS  Google Scholar 

  161. Alden JA, Compton RG (1996) The multigrid method, MGD1: an efficient and stable approach to electrochemical modelling. The simulation of double electrode problems. J Electroanal Chem 415:1–12

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Britz, D., Strutwolf, J. (2016). Convection. In: Digital Simulation in Electrochemistry. Monographs in Electrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-30292-8_14

Download citation

Publish with us

Policies and ethics