Skip to main content

Analysis, Adaptive Control and Synchronization of a Novel 3-D Highly Chaotic System

  • Chapter
  • First Online:
  • 1334 Accesses

Part of the book series: Studies in Computational Intelligence ((SCI,volume 636))

Abstract

In this work, we describe an eight-term novel highly chaotic system with three quadratic nonlinearities. The phase portraits of the novel highly chaotic system are illustrated and the dynamic properties of the highly chaotic system are discussed. The novel highly chaotic system has three unstable equilibrium points. We show that the equilibrium point at the origin is a saddle point, while the other two equilibrium points are a saddle-focus and a critical point. The novel highly chaotic system has rotation symmetry about the \(x_3\) axis. The Lyapunov exponents of the novel highly chaotic system are obtained as \(L_1 = 7.6557\), \(L_2 = 0\) and \(L_3 = -24.6796\), while the Kaplan–Yorke dimension of the novel chaotic system is obtained as \(D_{KY} = 2.3102\). Since the maximal Lyapunov exponent of the novel chaotic system has a high value, viz. \(L_1 = 7.6557\), the novel chaotic system is highly chaotic. Since the sum of the Lyapunov exponents is negative, the novel chaotic system is dissipative. Next, we derive new results for the global chaos control of the novel highly chaotic system with unknown parameters using adaptive control method. We also derive new results for the global chaos synchronization of the identical novel highly chaotic systems with unknown parameters using adaptive control method. The main control results are established using Lyapunov stability theory. MATLAB simulations are depicted to illustrate the phase portraits of the novel highly chaotic system and also the adaptive control results derived in this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abdurrahman A, Jiang H, Teng Z (2015) Finite-time synchronization for memristor-based neural networks with time-varying delays. Neural Netw 69:20–28

    Article  Google Scholar 

  2. Arneodo A, Coullet P, Tresser C (1981) Possible new strange attractors with spiral structure. Commun Math Phys 79(4):573–576

    Article  MathSciNet  MATH  Google Scholar 

  3. Azar AT, Vaidyanathan S (2015) Chaos modeling and control systems design, vol 581. Springer, Cham

    Google Scholar 

  4. Behnia S, Afrang S, Akhshani A, Mabhouti K (2013) A novel method for controlling chaos in external cavity semiconductor laser. Optik 124(8):757–764

    Article  Google Scholar 

  5. Cai G, Tan Z (2007) Chaos synchronization of a new chaotic system via nonlinear control. J Uncertain Syst 1(3):235–240

    Google Scholar 

  6. Chen G, Ueta T (1999) Yet another chaotic attractor. Int J Bifur Chaos 9(7):1465–1466

    Article  MathSciNet  MATH  Google Scholar 

  7. Islam MM, Murase K (2005) Chaotic dynamics of a behaviour-based miniature mobile robot: effects of environment and control structure. Neural Netw 18(2):123–144

    Article  Google Scholar 

  8. Karthikeyan R, Sundarapandian V (2014) Hybrid chaos synchronization of four-scroll systems via active control. J Electr Eng 65(2):97–103

    Google Scholar 

  9. Khalil HK (2001) Nonlinear Syst, 3rd edn. Prentice Hall, New Jersey

    Google Scholar 

  10. Li D (2008) A three-scroll chaotic attractor. Phys Lett A 372(4):387–393

    Article  MathSciNet  MATH  Google Scholar 

  11. Lorenz EN (1963) Deterministic periodic flow. J Atmos Sci 20(2):130–141

    Article  Google Scholar 

  12. Lü J, Chen G (2002) A new chaotic attractor coined. Int J Bifur Chaos 12(3):659–661

    Article  MathSciNet  MATH  Google Scholar 

  13. Matouk AE (2011) Chaos, feedback control and synchronization of a fractional-order modified autonomous Van der Pol-Duffing circuit. Commun Nonlinear Sci Numer Simul 16(2):975–986

    Google Scholar 

  14. Njah AN, Sunday OD (2009) Generalization on the chaos control of 4-D chaotic systems using recursive backstepping nonlinear controller. Chaos, Solitons Fractals 41(5):2371–2376

    Article  MATH  Google Scholar 

  15. Pehlivan I, Moroz IM, Vaidyanathan S (2014) Analysis, synchronization and circuit design of a novel butterfly attractor. J Sound Vib 333(20):5077–5096

    Article  Google Scholar 

  16. Pham VT, Volos CK, Vaidyanathan S, Le TP, Vu VY (2015) A memristor-based hyperchaotic system with hidden attractors: dynamics, synchronization and circuital emulating. J Eng Sci Technol Rev 8(2):205–214

    Google Scholar 

  17. Rasappan S, Vaidyanathan S (2013) Hybrid synchronization of \(n\)-scroll Chua circuits using adaptive backstepping control design with recursive feedback. Malays J Math Sci 73(1):73–95

    MathSciNet  Google Scholar 

  18. Rasappan S, Vaidyanathan S (2014) Global chaos synchronization of WINDMI and Coullet chaotic systems using adaptive backstepping control design. Kyungpook Math J 54(1):293–320

    Google Scholar 

  19. Rhouma R, Belghith S (2011) Cryptanalysis of a chaos-based cryptosystem. Commun Nonlinear Sci Numer Simul 16(2):876–884

    Article  MathSciNet  MATH  Google Scholar 

  20. Rössler OE (1976) An equation for continuous chaos. Phys Lett A 57(5):397–398

    Article  Google Scholar 

  21. Sampath S, Vaidyanathan S, Volos CK, Pham VT (2015) An eight-term novel four-scroll chaotic system with cubic nonlinearity and its circuit simulation. J Eng Sci Technol Rev 8(2):1–6

    Google Scholar 

  22. Sarasu P, Sundarapandian V (2011) Active controller design for generalized projective synchronization of four-scroll chaotic systems. Int J Syst Signal Control Eng Appl 4(2):26–33

    Google Scholar 

  23. Sarasu P, Sundarapandian V (2011) The generalized projective synchronization of hyperchaotic Lorenz and hyperchaotic Qi systems via active control. Int J Soft Comput 6(5):216–223

    Google Scholar 

  24. Sarasu P, Sundarapandian V (2012) Generalized projective synchronization of two-scroll systems via adaptive control. Int J Soft Comput 7(4):146–156

    Article  Google Scholar 

  25. Sprott JC (1994) Some simple chaotic flows. Phys Rev E 50(2):647–650

    Article  MathSciNet  Google Scholar 

  26. Sundarapandian V (2010) Output regulation of the Lorenz attractor. Far East J Math Sci 42(2):289–299

    MathSciNet  MATH  Google Scholar 

  27. Sundarapandian V (2013) Adaptive control and synchronization design for the Lu-Xiao chaotic system. Lect Notes Electr Eng 131:319–327

    Article  Google Scholar 

  28. Sundarapandian V (2013) Analysis and anti-synchronization of a novel chaotic system via active and adaptive controllers. J Eng Sci Technol Rev 6(4):45–52

    Google Scholar 

  29. Sundarapandian V, Karthikeyan R (2011) Anti-synchronization of hyperchaotic Lorenz and hyperchaotic Chen systems by adaptive control. Int J Syst Signal Control Eng Appl 4(2):18–25

    Google Scholar 

  30. Sundarapandian V, Karthikeyan R (2011) Anti-synchronization of Lü and Pan chaotic systems by adaptive nonlinear control. Eur J Sci Res 64(1):94–106

    Google Scholar 

  31. Sundarapandian V, Karthikeyan R (2012) Adaptive anti-synchronization of uncertain Tigan and Li systems. J Eng Appl Sci 7(1):45–52

    Article  MATH  Google Scholar 

  32. Sundarapandian V, Pehlivan I (2012) Analysis, control, synchronization, and circuit design of a novel chaotic system. Math Comput Model 55(7–8):1904–1915

    Article  MathSciNet  MATH  Google Scholar 

  33. Sundarapandian V, Sivaperumal S (2011) Sliding controller design of hybrid synchronization of four-wing chaotic systems. Int J Soft Comput 6(5):224–231

    Article  Google Scholar 

  34. Suresh R, Sundarapandian V (2013) Global chaos synchronization of a family of \(n\)-scroll hyperchaotic Chua circuits using backstepping control with recursive feedback. Far East J Math Sci 7(2):219–246

    MathSciNet  MATH  Google Scholar 

  35. Tigan G, Opris D (2008) Analysis of a 3D chaotic system. Chaos, Solitons Fractals 36:1315–1319

    Google Scholar 

  36. Tuwankotta JM (2006) Chaos in a coupled oscillators system with widely spaced frequencies and energy-preserving non-linearity. Int J Non-Linear Mech 41(2):180–191

    Article  MathSciNet  MATH  Google Scholar 

  37. Usama M, Khan MK, Alghathbar K, Lee C (2010) Chaos-based secure satellite imagery cryptosystem. Comput Math Appl 60(2):326–337

    Article  MathSciNet  MATH  Google Scholar 

  38. Vaidyanathan S (2011) Output regulation of Arneodo-Coullet chaotic system. Commun Comput Inf Sci 133:98–107

    Article  Google Scholar 

  39. Vaidyanathan S (2011) Output regulation of the unified chaotic system. Commun Comput Inf Sci 198:1–9

    Article  Google Scholar 

  40. Vaidyanathan S (2012) Adaptive controller and syncrhonizer design for the Qi-Chen chaotic system. Advances in computer science and information technology. Computer science and engineering, vol 84, Lecture notes of the institute for computer sciences, social-informatics and telecommunications engineeringSpringer, Berlin, pp 73–82

    Google Scholar 

  41. Vaidyanathan S (2012) Anti-synchronization of Sprott-L and Sprott-M chaotic systems via adaptive control. Int J Control Theory Appl 5(1):41–59

    MathSciNet  Google Scholar 

  42. Vaidyanathan S (2012) Global chaos control of hyperchaotic Liu system via sliding control method. Int J Control Theory Appl 5(2):117–123

    Google Scholar 

  43. Vaidyanathan S (2012) Sliding mode control based global chaos control of Liu-Liu-Liu-Su chaotic system. Int J Control Theory Appl 5(1):15–20

    MathSciNet  Google Scholar 

  44. Vaidyanathan S (2013) A new six-term 3-D chaotic system with an exponential nonlinearity. Far East J Math Sci 79(1):135–143

    MATH  Google Scholar 

  45. Vaidyanathan S (2013) A ten-term novel 4-D hyperchaotic system with three quadratic nonlinearities and its control. Int J Control Theory Appl 6(2):97–109

    MathSciNet  Google Scholar 

  46. Vaidyanathan S (2013) Analysis and adaptive synchronization of two novel chaotic systems with hyperbolic sinusoidal and cosinusoidal nonlinearity and unknown parameters. J Eng Sci Technol Rev 6(4):53–65

    MathSciNet  Google Scholar 

  47. Vaidyanathan S (2013) Analysis, control and synchronization of hyperchaotic Zhou system via adaptive control. Adv Intell Syst Comput 177:1–10

    Article  Google Scholar 

  48. Vaidyanathan S (2014) A new eight-term 3-D polynomial chaotic system with three quadratic nonlinearities. Far East J Math Sci 84(2):219–226

    MATH  Google Scholar 

  49. Vaidyanathan S (2014) Analysis and adaptive synchronization of eight-term 3-D polynomial chaotic systems with three quadratic nonlinearities. Eur Phys J: Special Top 223(8):1519–1529

    Google Scholar 

  50. Vaidyanathan S (2014) Analysis, control and synchronisation of a six-term novel chaotic system with three quadratic nonlinearities. Int J Model, Ident Control 22(1):41–53

    Article  Google Scholar 

  51. Vaidyanathan S (2014) Generalised projective synchronisation of novel 3-D chaotic systems with an exponential non-linearity via active and adaptive control. Int J Model, Identif Control 22(3):207–217

    Article  MathSciNet  Google Scholar 

  52. Vaidyanathan S (2014) Global chaos synchronisation of identical Li-Wu chaotic systems via sliding mode control. Int J Model, Identif Control 22(2):170–177

    Article  Google Scholar 

  53. Vaidyanathan S (2014) Qualitative analysis and control of an eleven-term novel 4-D hyperchaotic system with two quadratic nonlinearities. Int J Control Theory Appl 7:35–47

    Google Scholar 

  54. Vaidyanathan S (2015) 3-cells cellular neural network (CNN) attractor and its adaptive biological control. Int J PharmTech Res 8(4):632–640

    Google Scholar 

  55. Vaidyanathan S (2015) A 3-D novel highly chaotic system with four quadratic nonlinearities, its adaptive control and anti-synchronization with unknown parameters. J Eng Sci Technol Rev 8(2):106–115

    Google Scholar 

  56. Vaidyanathan S (2015) A novel chemical chaotic reactor system and its adaptive control. Int J ChemTech Res 8(7):146–158

    MathSciNet  Google Scholar 

  57. Vaidyanathan S (2015) Adaptive backstepping control of enzymes-substrates system with ferroelectric behaviour in brain waves. Int J PharmTech Res 8(2):256–261

    Google Scholar 

  58. Vaidyanathan S (2015) Adaptive biological control of generalized Lotka-Volterra three-species biological system. Int J PharmTech Res 8(4):622–631

    Google Scholar 

  59. Vaidyanathan S (2015) Adaptive chaotic synchronization of enzymes-substrates system with ferroelectric behaviour in brain waves. Int J PharmTech Res 8(5):964–973

    Google Scholar 

  60. Vaidyanathan S (2015) Adaptive control of a chemical chaotic reactor. Int J PharmTech Res 8(3):377–382

    Google Scholar 

  61. Vaidyanathan S (2015) Adaptive control of the FitzHugh-Nagumo chaotic neuron model. Int PharmTech Res 8(6):117–127

    Google Scholar 

  62. Vaidyanathan S (2015) Adaptive synchronization of chemical chaotic reactors. Int J ChemTech Res 8(2):612–621

    Google Scholar 

  63. Vaidyanathan S (2015) Adaptive synchronization of generalized Lotka-Volterra three-species biological systems. Int J PharmTech Res 8(5):928–937

    Google Scholar 

  64. Vaidyanathan S (2015) Adaptive synchronization of novel 3-D chemical chaotic reactor systems. Int J ChemTech Res 8(7):159–171

    MathSciNet  Google Scholar 

  65. Vaidyanathan S (2015) Adaptive synchronization of the identical FitzHugh-Nagumo chaotic neuron models. Int J PharmTech Res 8(6):167–177

    Google Scholar 

  66. Vaidyanathan S (2015) Analysis, control and synchronization of a 3-D novel jerk chaotic system with two quadratic nonlinearities. Kyungpook Math J 55:563–586

    Article  MathSciNet  MATH  Google Scholar 

  67. Vaidyanathan S (2015) Analysis, properties and control of an eight-term 3-D chaotic system with an exponential nonlinearity. Int J Model, Identif Control 23(2):164–172

    Article  Google Scholar 

  68. Vaidyanathan S (2015) Anti-synchronization of brusselator chemical reaction systems via adaptive control. Int J ChemTech Res 8(6):759–768

    Google Scholar 

  69. Vaidyanathan S (2015) Chaos in neurons and adaptive control of Birkhoff-Shaw strange chaotic attractor. Int J PharmTech Res 8(5):956–963

    Google Scholar 

  70. Vaidyanathan S (2015) Chaos in neurons and synchronization of Birkhoff-Shaw strange chaotic attractors via adaptive control. Int J PharmTech Res 8(6):1–11

    Google Scholar 

  71. Vaidyanathan S (2015) Coleman-Gomatam logarithmic competitive biology models and their ecological monitoring. Int J PharmTech Res 8(6):94–105

    Google Scholar 

  72. Vaidyanathan S (2015) Dynamics and control of brusselator chemical reaction. Int J ChemTech Res 8(6):740–749

    Google Scholar 

  73. Vaidyanathan S (2015) Dynamics and control of tokamak system with symmetric and magnetically confined plasma. Int J ChemTech Res 8(6):795–803

    Google Scholar 

  74. Vaidyanathan S (2015) Global chaos synchronization of chemical chaotic reactors via novel sliding mode control method. Int J ChemTech Res 8(7):209–221

    MathSciNet  Google Scholar 

  75. Vaidyanathan S (2015) Global chaos synchronization of the forced Van der Pol chaotic oscillators via adaptive control method. Inte J PharmTech Res 8(6):156–166

    Google Scholar 

  76. Vaidyanathan S (2015) Global chaos synchronization of the Lotka-Volterra biological systems with four competitive species via active control. Int J PharmTech Res 8(6):206–217

    Google Scholar 

  77. Vaidyanathan S (2015) Lotka-Volterra population biology models with negative feedback and their ecological monitoring. Int J PharmTech Res 8(5):974–981

    Google Scholar 

  78. Vaidyanathan S (2015) Lotka-Volterra two species competitive biology models and their ecological monitoring. Int J PharmTech Res 8(6):32–44

    Google Scholar 

  79. Vaidyanathan S (2015) Output regulation of the forced Van der Pol chaotic oscillator via adaptive control method. Int J PharmTech Res 8(6):106–116

    Google Scholar 

  80. Vaidyanathan S, Azar AT (2015) Analysis and control of a 4-D novel hyperchaotic system. Stud Comput Intell 581:3–17

    Article  Google Scholar 

  81. Vaidyanathan S, Azar AT (2015) Analysis, control and synchronization of a nine-term 3-D novel chaotic system. In: Azar AT, Vaidyanathan S (eds) Chaos Modelling and Control Systems Design, Studies in Computational Intelligence, vol 581. Springer, Cham, pp 19–38

    Google Scholar 

  82. Vaidyanathan S, Madhavan K (2013) Analysis, adaptive control and synchronization of a seven-term novel 3-D chaotic system. Int J Control Theory Appl 6(2):121–137

    Google Scholar 

  83. Vaidyanathan S, Pakiriswamy S (2013) Generalized projective synchronization of six-term Sundarapandian chaotic systems by adaptive control. Int J Control Theory Appl 6(2):153–163

    Google Scholar 

  84. Vaidyanathan S, Pakiriswamy S (2015) A 3-D novel conservative chaotic system and its generalized projective synchronization via adaptive control. J Eng Sci Technol Rev 8(2):52–60

    Google Scholar 

  85. Vaidyanathan S, Rajagopal K (2011) Hybrid synchronization of hyperchaotic Wang-Chen and hyperchaotic Lorenz systems by active non-linear control. Int J Syst Signal Control Eng Appl 4(3):55–61

    Google Scholar 

  86. Vaidyanathan S, Rajagopal K (2012) Global chaos synchronization of hyperchaotic Pang and hyperchaotic Wang systems via adaptive control. Int J Soft Comput 7(1):28–37

    Article  MATH  Google Scholar 

  87. Vaidyanathan S, Rasappan S (2011) Global chaos synchronization of hyperchaotic Bao and Xu systems by active nonlinear control. Commun Comput Inf Sci 198:10–17

    Article  Google Scholar 

  88. Vaidyanathan S, Rasappan S (2014) Global chaos synchronization of \(n\)-scroll Chua circuit and Lur’e system using backstepping control design with recursive feedback. Arabian J Sci Eng 39(4):3351–3364

    Article  Google Scholar 

  89. Vaidyanathan S, Sampath S (2012) Anti-synchronization of four-wing chaotic systems via sliding mode control. Int J Autom Comput 9(3):274–279

    Article  Google Scholar 

  90. Vaidyanathan S, Volos C (2015) Analysis and adaptive control of a novel 3-D conservative no-equilibrium chaotic system. Arch Control Sci 25(3):333–353

    Google Scholar 

  91. Vaidyanathan S, Volos C, Pham VT (2014) Hyperchaos, adaptive control and synchronization of a novel 5-D hyperchaotic system with three positive Lyapunov exponents and its SPICE implementation. Arch Control Sci 24(4):409–446

    MathSciNet  MATH  Google Scholar 

  92. Vaidyanathan S, Volos C, Pham VT, Madhavan K, Idowu BA (2014) Adaptive backstepping control, synchronization and circuit simulation of a 3-D novel jerk chaotic system with two hyperbolic sinusoidal nonlinearities. Arch Control Sci 24(3):375–403

    MathSciNet  MATH  Google Scholar 

  93. Vaidyanathan S, Azar AT, Rajagopal K, Alexander P (2015) Design and SPICE implementation of a 12-term novel hyperchaotic system and its synchronisation via active control. Int J Model, Identif Control 23(3):267–277

    Article  Google Scholar 

  94. Vaidyanathan S, Idowu BA, Azar AT (2015) Backstepping controller design for the global chaos synchronization of Sprott’s jerk systems. Stud Comput Intell 581:39–58

    Article  Google Scholar 

  95. Vaidyanathan S, Rajagopal K, Volos CK, Kyprianidis IM, Stouboulos IN (2015) Analysis, adaptive control and synchronization of a seven-term novel 3-D chaotic system with three quadratic nonlinearities and its digital implementation in LabVIEW. J Eng Sci Technol Rev 8(2):130–141

    Google Scholar 

  96. Vaidyanathan S, Sampath S, Azar AT (2015) Global chaos synchronisation of identical chaotic systems via novel sliding mode control method and its application to Zhu system. Int J Model, Identif Control 23(1):92–100

    Article  Google Scholar 

  97. Vaidyanathan S, Volos C, Pham VT, Madhavan K (2015) Analysis, adaptive control and synchronization of a novel 4-D hyperchaotic hyperjerk system and its SPICE implementation. Nonlinear Dyn 25(1):135–158

    Google Scholar 

  98. Vaidyanathan S, Volos CK, Kyprianidis IM, Stouboulos IN, Pham VT (2015) Analysis, adaptive control and anti-synchronization of a six-term novel jerk chaotic system with two exponential nonlinearities and its circuit simulation. J Eng Sci Technol Rev 8(2):24–36

    Google Scholar 

  99. Vaidyanathan S, Volos CK, Pham VT (2015) Analysis, adaptive control and adaptive synchronization of a nine-term novel 3-D chaotic system with four quadratic nonlinearities and its circuit simulation. J Eng Sci Technol Rev 8(2):181–191

    Google Scholar 

  100. Vaidyanathan S, Volos CK, Pham VT (2015) Analysis, control, synchronization and SPICE implementation of a novel 4-D hyperchaotic Rikitake dynamo system without equilibrium. J Eng Sci Technol Rev 8(2):232–244

    Google Scholar 

  101. Vaidyanathan S, Volos CK, Pham VT (2015) Global chaos control of a novel nine-term chaotic system via sliding mode control. In: Azar AT, Zhu Q (eds) Advances and Applications in Sliding Mode Control Systems, Studies in Computational Intelligence, vol 576. Springer, Cham, pp 571–590

    Google Scholar 

  102. Vincent UE, Njah AN, Laoye JA (2007) Controlling chaos and deterministic directed transport in inertia ratchets using backstepping control. Phys D 231(2):130–136

    Article  MathSciNet  MATH  Google Scholar 

  103. Volos CK, Kyprianidis IM, Stouboulos IN, Anagnostopoulos AN (2009) Experimental study of the dynamic behavior of a double scroll circuit. J Appl Funct Anal 4:703–711

    Google Scholar 

  104. Volos CK, Kyprianidis IM, Stouboulos IN (2013) Experimental investigation on coverage performance of a chaotic autonomous mobile robot. Robot Autonom Syst 61(12):1314–1322

    Article  Google Scholar 

  105. Volos CK, Kyprianidis IM, Stouboulos IN, Tlelo-Cuautle E, Vaidyanathan S (2015) Memristor: a new concept in synchronization of coupled neuromorphic circuits. J Eng Sci Technol Rev 8(2):157–173

    Google Scholar 

  106. Yang J, Zhu F (2013) Synchronization for chaotic systems and chaos-based secure communications via both reduced-order and step-by-step sliding mode observers. Commun Nonlinear Sci Numer Simul 18(4):926–937

    Article  MathSciNet  MATH  Google Scholar 

  107. Yang J, Chen Y, Zhu F (2014) Singular reduced-order observer-based synchronization for uncertain chaotic systems subject to channel disturbance and chaos-based secure communication. Appl Math Comput 229:227–238

    Google Scholar 

  108. Zhou W, Xu Y, Lu H, Pan L (2008) On dynamics analysis of a new chaotic attractor. Phys Lett A 372(36):5773–5777

    Article  MathSciNet  MATH  Google Scholar 

  109. Zhu C, Liu Y, Guo Y (2010) Theoretic and numerical study of a new chaotic system. Intell Inf Manage 2:104–109

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundarapandian Vaidyanathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vaidyanathan, S. (2016). Analysis, Adaptive Control and Synchronization of a Novel 3-D Highly Chaotic System. In: Vaidyanathan, S., Volos, C. (eds) Advances and Applications in Chaotic Systems . Studies in Computational Intelligence, vol 636. Springer, Cham. https://doi.org/10.1007/978-3-319-30279-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30279-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30278-2

  • Online ISBN: 978-3-319-30279-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics