Skip to main content

Control of Shimizu–Morioka Chaotic System with Passive Control, Sliding Mode Control and Backstepping Design Methods: A Comparative Analysis

  • Chapter
  • First Online:
Advances and Applications in Chaotic Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 636))

  • 1387 Accesses

Abstract

This chapter investigates the control of continuous time Shimizu–Morioka chaotic system with unknown system parameters by means of three different control approaches, namely passive control, sliding mode control and backstepping design. Based on the properties of sliding mode control theory, the appropriate surfaces are designed. Lyapunov functions are used to realize that the passive controller and backstepping controllers ensure the global asymptotic stability of the system. Owing to the controllers, the Shimizu–Morioka chaotic system stabilizes towards its equilibrium points in the state space. Numerical simulations are performed to show and compare the efficiency of the proposed control methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Banerjee S, Kurths J (2014) Chaos and cryptography: a new dimension in secure communications. Eur Phys J-Spec Topics 223(8):1441–1445

    Article  Google Scholar 

  2. Chang JF, Hung ML, Yang YS, Liao TL, Yan JJ (2008) Controlling chaos of the family of Rössler systems using sliding mode control. Chaos, Solitons Fractals 37(2):609–622

    Article  MathSciNet  MATH  Google Scholar 

  3. Chantov D (2009) Chaotic synchronization methods based on stability analysis of linear systems. Trak Univ J Sci 10(2):165–171

    Google Scholar 

  4. Chen X, Liu C (2010) Passive control on a unified chaotic system. Nonlinear Anal: Real World Appl 11:683–687

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen G, Ueta T (1999) Yet another chaotic attractor. Int J Bifurc Chaos 9(7):1465–1466

    Article  MathSciNet  MATH  Google Scholar 

  6. de Paula AS, Savi MA (2011) Comparative analysis of chaos control methods: a mechanical system case study. Int J Non-Linear Mech 46(8):1076–1089

    Article  Google Scholar 

  7. El-Dessoky MM, Yassen MT, Aly ES (2014) Bifurcation analysis and chaos control in Shimizu-Morioka chaotic system with delayed feedback. Appl Math Comput 243:283–297

    MathSciNet  Google Scholar 

  8. Emiroglu S, Uyaroglu Y (2010) Control of Rabinovich chaotic system based on passive control. Sci Res Essays 5(21):3298–3305

    Google Scholar 

  9. Guessas L, Benmahammed K (2011) Adaptive backstepping and PID optimized by genetic algorithm in control of chaotic. Int J In-novative Comput Inf Control 7(9):5299–5312

    Google Scholar 

  10. Henon M (1976) A two-dimensional mapping with a strange attractor. Commun Math Phys 50(1):69–77

    Article  MathSciNet  MATH  Google Scholar 

  11. Hubler A (1989) Adaptive control of chaotic systems. Helv Phys Acta 62:343–346

    Google Scholar 

  12. Islam N, Mazumdar HP, Das A (2009) On the stability and control of the Schimizu-Morioka system of dynamical equations. Differ Geom-Dyn Syst 11:135–143

    MathSciNet  MATH  Google Scholar 

  13. Jang MJ, Chen CL, Chen CK (2002) Sliding mode control of chaos in the cubic Chua’s circuit system. Int J Bifurc Chaos 12(6):1437–1449

    Article  Google Scholar 

  14. Kareem SO, Ojo KS, Njah AN (2012) Function projective synchronization of identical and non-identical modified finance and Shimizu-Morioka systems. Pramana—J Phys 79(1):71–79

    Google Scholar 

  15. Leonov GA (2012) General existence conditions of homoclinic trajectories in dissipative systems. Lorenz, Shimizu-Morioka, Lu and Chen systems. Phys Lett A 376:3045–3050

    Article  MathSciNet  MATH  Google Scholar 

  16. Li CL, Tong YN (2013) Adaptive control and synchronization of a fractional-order chaotic system. Pramana—J Phys 80(4):583–592

    Google Scholar 

  17. Liao X, Xu F, Wang P, Yu P (2009) Chaos control and synchronization for a special generalized Lorenz canonical system–the SM system. Chaos, Solitons Fractals 39(5):2491–2508

    Article  MathSciNet  MATH  Google Scholar 

  18. Lin Y, Wang CH (2015) A novel grid multi-scroll chaotic oscillator. Electron World 121(1946):35–39

    Google Scholar 

  19. Liu L, Gao B (2011) Conditions for appearance and disappearance of limit cycles in the Shimizu-Morioka system. Int J Bifurc Chaos 21(9):2489–2503

    Article  MathSciNet  MATH  Google Scholar 

  20. Llibre J, Pessoa C (2015) The Hopf bifurcation in the Shimizu-Morioka system. Nonlinear Dyn 79(3):2197–2205

    Article  MathSciNet  MATH  Google Scholar 

  21. Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141

    Article  Google Scholar 

  22. Lü J, Chen G, Zhang S (2002) The compound structure of a new chaotic attractor. Chaos, Solitons & Fractals 14(5):669–672

    Article  MathSciNet  MATH  Google Scholar 

  23. Mahmoud GM, Mahmoud EE, Arafa AA (2013) Passive control of n-dimensional chaotic complex nonlinear systems. J Vib Control 19(7):1061–1071

    Article  MathSciNet  Google Scholar 

  24. Matsumoto T (1984) A chaotic attractor from Chua’s circuit. IEEE Trans Circuits Syst CAS 31(12):1055–1058

    Article  MATH  Google Scholar 

  25. Messias M, Gouveia MRA, Pessoa C (2012) Dynamics at infinity and other global dynamical aspects of Shimizu-Morioka equations. Nonlinear Dyn 69(1–2):577–587

    Article  MathSciNet  MATH  Google Scholar 

  26. Motallebzadeh F, Dadras S, Motallebzadeh F, Ozgoli S (2009) Controlling chaos in Arneodo system. 17th Mediterranean Conference on Control & Automation, Thessaloniki, Greece, IEEE, vols 1–3, pp 314–319

    Google Scholar 

  27. Njah AN (2010) Tracking control and synchronization of the new hyperchaotic Liu system via backstepping techniques. Nonlinear Dyn 61(1–2):1–9

    Article  MathSciNet  MATH  Google Scholar 

  28. Ojo KS, Njah AN, Ogunjo ST (2013) Comparison of backstepping and modified active control in projective synchronization of chaos in an extended Bonhöffer-van der Pol oscillator. Pramana—J Phys 80(5):825–835

    Google Scholar 

  29. Ott E, Grebogi C, Yorke JA (1990) Controlling chaos. Phys Rev Lett 64(11):1196–1199

    Article  MathSciNet  MATH  Google Scholar 

  30. Peng ZP, Wang CH, Lin Y, Luo XW (2014) A novel four-dimensional multi-wing hyper-chaotic attractor and its application in image encryption. Acta Phys Sinica 63(24):240506

    Google Scholar 

  31. Qi D, Zhao G, Song Y (2004) Passive control of Chen chaotic system. Proceedings of the 5th World Congress on Intelligent Control and Automation, Hangzhou, China, pp 1284–1286

    Google Scholar 

  32. Qiao ZQ, Li XY (2014) Dynamical analysis and numerical simulation of a new Lorenz-type chaotic system. Math Comput Model Dyn Syst 20(3):264–283

    Article  MathSciNet  MATH  Google Scholar 

  33. Rössler OE (1976) An equation for continuous chaos. Phys Lett A 57(5):397–398

    Article  Google Scholar 

  34. Shilnikov AL (1993) On bifurcations of the Lorenz attractor in the Shimizu-Morioka model. Physica D 62:338–346

    Article  MathSciNet  Google Scholar 

  35. Shimizu T, Morioka N (1980) On the bifurcation of a symmetric limit cycle to an asymmetric one in a simple model. Phys Lett A 76(3–4):201–204

    Article  MathSciNet  Google Scholar 

  36. Slotine JJ (1984) Sliding controller design for nonlinear systems. Int J Control 40(2):421–434

    Article  MATH  Google Scholar 

  37. Tigan G, Turaev D (2011) Analytical search for homoclinic bifurcations in the Shimizu-Morioka model. Physica D 240:985–989

    Article  MathSciNet  MATH  Google Scholar 

  38. Vaidyanathan S (2011) Global chaos synchronization of Shimizu-Morioka and Liu-Chen chaotic systems by active nonlinear control. Int J Adv Sci Technol 2(4):11–20

    MathSciNet  Google Scholar 

  39. Vaidyanathan S (2011) Global chaos synchronization of Arneodo and Shimizu-Morioka chaotic systems by active nonlinear control. Int J Adv Sci Technol 2(6):32–42

    Google Scholar 

  40. Vaidyanathan S (2011) Sliding mode controller design for synchronization of Shimizu-Morioka chaotic systems. Int J Inf Sci Tech 1(1):20–29

    Google Scholar 

  41. Vaidyanathan S (2012) Adaptive control and synchronization of Shimizu-Morioka chaotic system. Int J Found Comput Sci Technol 2(4):29–42

    Article  MathSciNet  Google Scholar 

  42. Wang X, Li X (2010) Feedback control of the Liu chaotic dynamical system. Int J Modern Phys B 24(3):397–404

    Article  MATH  Google Scholar 

  43. Wang MJ, Wang XY (2009) Controlling Liu system with different methods. Modern Phys Lett B 23(14):1805–1818

    Article  MATH  Google Scholar 

  44. Wu X, Lu J, Tse CK, Wang J, Liu J (2007) Impulsive control and synchronization of the Lorenz systems family. Chaos, Solitons Fractals 31(3):631–638

    Article  MathSciNet  MATH  Google Scholar 

  45. Yang C, Tao CH, Wang P (2010) Comparison of feedback control methods for a hyperchaotic Lorenz system. Phys Lett A 374(5):729–732

    Article  MathSciNet  MATH  Google Scholar 

  46. Yassen MT (2006) Chaos control of chaotic dynamical systems using backstepping design. Chaos, Solitons Fractals 27(2):537–548

    Article  MathSciNet  MATH  Google Scholar 

  47. Yau HT, Chen CK, Chen CL (2000) Sliding mode control of chaotic systems with uncertainties. Int J Bifurc Chaos 10(5):1139–1147

    Article  Google Scholar 

  48. Yau HT, Yan JJ (2004) Design of sliding mode controller for Lorenz chaotic system with nonlinear input. Chaos, Solitons Fractals 19(4):891–898

    Article  MathSciNet  MATH  Google Scholar 

  49. Yu W (1999) Passive equivalence of chaos in Lorenz system. IEEE Trans Circuits Syst-I: Fundam Theory Appl 46(7):876–878

    Article  Google Scholar 

  50. Zhang H, Ma XK, Li M, Zou JL (2005) Controlling and tracking hyperchaotic Rössler system via active backstepping design. Chaos, Solitons Fractals 26(2):353–361

    Article  MATH  Google Scholar 

  51. Zhou WN, Pan L, Li Z, Halang WA (2009) Non-linear feedback control of a novel chaotic system. Int J Control, Autom Syst 7(6):939–944

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uğur Erkin Kocamaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kocamaz, U.E., Uyaroğlu, Y., Vaidyanathan, S. (2016). Control of Shimizu–Morioka Chaotic System with Passive Control, Sliding Mode Control and Backstepping Design Methods: A Comparative Analysis. In: Vaidyanathan, S., Volos, C. (eds) Advances and Applications in Chaotic Systems . Studies in Computational Intelligence, vol 636. Springer, Cham. https://doi.org/10.1007/978-3-319-30279-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30279-9_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30278-2

  • Online ISBN: 978-3-319-30279-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics