Abstract
This chapter investigates the control of continuous time Shimizu–Morioka chaotic system with unknown system parameters by means of three different control approaches, namely passive control, sliding mode control and backstepping design. Based on the properties of sliding mode control theory, the appropriate surfaces are designed. Lyapunov functions are used to realize that the passive controller and backstepping controllers ensure the global asymptotic stability of the system. Owing to the controllers, the Shimizu–Morioka chaotic system stabilizes towards its equilibrium points in the state space. Numerical simulations are performed to show and compare the efficiency of the proposed control methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Banerjee S, Kurths J (2014) Chaos and cryptography: a new dimension in secure communications. Eur Phys J-Spec Topics 223(8):1441–1445
Chang JF, Hung ML, Yang YS, Liao TL, Yan JJ (2008) Controlling chaos of the family of Rössler systems using sliding mode control. Chaos, Solitons Fractals 37(2):609–622
Chantov D (2009) Chaotic synchronization methods based on stability analysis of linear systems. Trak Univ J Sci 10(2):165–171
Chen X, Liu C (2010) Passive control on a unified chaotic system. Nonlinear Anal: Real World Appl 11:683–687
Chen G, Ueta T (1999) Yet another chaotic attractor. Int J Bifurc Chaos 9(7):1465–1466
de Paula AS, Savi MA (2011) Comparative analysis of chaos control methods: a mechanical system case study. Int J Non-Linear Mech 46(8):1076–1089
El-Dessoky MM, Yassen MT, Aly ES (2014) Bifurcation analysis and chaos control in Shimizu-Morioka chaotic system with delayed feedback. Appl Math Comput 243:283–297
Emiroglu S, Uyaroglu Y (2010) Control of Rabinovich chaotic system based on passive control. Sci Res Essays 5(21):3298–3305
Guessas L, Benmahammed K (2011) Adaptive backstepping and PID optimized by genetic algorithm in control of chaotic. Int J In-novative Comput Inf Control 7(9):5299–5312
Henon M (1976) A two-dimensional mapping with a strange attractor. Commun Math Phys 50(1):69–77
Hubler A (1989) Adaptive control of chaotic systems. Helv Phys Acta 62:343–346
Islam N, Mazumdar HP, Das A (2009) On the stability and control of the Schimizu-Morioka system of dynamical equations. Differ Geom-Dyn Syst 11:135–143
Jang MJ, Chen CL, Chen CK (2002) Sliding mode control of chaos in the cubic Chua’s circuit system. Int J Bifurc Chaos 12(6):1437–1449
Kareem SO, Ojo KS, Njah AN (2012) Function projective synchronization of identical and non-identical modified finance and Shimizu-Morioka systems. Pramana—J Phys 79(1):71–79
Leonov GA (2012) General existence conditions of homoclinic trajectories in dissipative systems. Lorenz, Shimizu-Morioka, Lu and Chen systems. Phys Lett A 376:3045–3050
Li CL, Tong YN (2013) Adaptive control and synchronization of a fractional-order chaotic system. Pramana—J Phys 80(4):583–592
Liao X, Xu F, Wang P, Yu P (2009) Chaos control and synchronization for a special generalized Lorenz canonical system–the SM system. Chaos, Solitons Fractals 39(5):2491–2508
Lin Y, Wang CH (2015) A novel grid multi-scroll chaotic oscillator. Electron World 121(1946):35–39
Liu L, Gao B (2011) Conditions for appearance and disappearance of limit cycles in the Shimizu-Morioka system. Int J Bifurc Chaos 21(9):2489–2503
Llibre J, Pessoa C (2015) The Hopf bifurcation in the Shimizu-Morioka system. Nonlinear Dyn 79(3):2197–2205
Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141
Lü J, Chen G, Zhang S (2002) The compound structure of a new chaotic attractor. Chaos, Solitons & Fractals 14(5):669–672
Mahmoud GM, Mahmoud EE, Arafa AA (2013) Passive control of n-dimensional chaotic complex nonlinear systems. J Vib Control 19(7):1061–1071
Matsumoto T (1984) A chaotic attractor from Chua’s circuit. IEEE Trans Circuits Syst CAS 31(12):1055–1058
Messias M, Gouveia MRA, Pessoa C (2012) Dynamics at infinity and other global dynamical aspects of Shimizu-Morioka equations. Nonlinear Dyn 69(1–2):577–587
Motallebzadeh F, Dadras S, Motallebzadeh F, Ozgoli S (2009) Controlling chaos in Arneodo system. 17th Mediterranean Conference on Control & Automation, Thessaloniki, Greece, IEEE, vols 1–3, pp 314–319
Njah AN (2010) Tracking control and synchronization of the new hyperchaotic Liu system via backstepping techniques. Nonlinear Dyn 61(1–2):1–9
Ojo KS, Njah AN, Ogunjo ST (2013) Comparison of backstepping and modified active control in projective synchronization of chaos in an extended Bonhöffer-van der Pol oscillator. Pramana—J Phys 80(5):825–835
Ott E, Grebogi C, Yorke JA (1990) Controlling chaos. Phys Rev Lett 64(11):1196–1199
Peng ZP, Wang CH, Lin Y, Luo XW (2014) A novel four-dimensional multi-wing hyper-chaotic attractor and its application in image encryption. Acta Phys Sinica 63(24):240506
Qi D, Zhao G, Song Y (2004) Passive control of Chen chaotic system. Proceedings of the 5th World Congress on Intelligent Control and Automation, Hangzhou, China, pp 1284–1286
Qiao ZQ, Li XY (2014) Dynamical analysis and numerical simulation of a new Lorenz-type chaotic system. Math Comput Model Dyn Syst 20(3):264–283
Rössler OE (1976) An equation for continuous chaos. Phys Lett A 57(5):397–398
Shilnikov AL (1993) On bifurcations of the Lorenz attractor in the Shimizu-Morioka model. Physica D 62:338–346
Shimizu T, Morioka N (1980) On the bifurcation of a symmetric limit cycle to an asymmetric one in a simple model. Phys Lett A 76(3–4):201–204
Slotine JJ (1984) Sliding controller design for nonlinear systems. Int J Control 40(2):421–434
Tigan G, Turaev D (2011) Analytical search for homoclinic bifurcations in the Shimizu-Morioka model. Physica D 240:985–989
Vaidyanathan S (2011) Global chaos synchronization of Shimizu-Morioka and Liu-Chen chaotic systems by active nonlinear control. Int J Adv Sci Technol 2(4):11–20
Vaidyanathan S (2011) Global chaos synchronization of Arneodo and Shimizu-Morioka chaotic systems by active nonlinear control. Int J Adv Sci Technol 2(6):32–42
Vaidyanathan S (2011) Sliding mode controller design for synchronization of Shimizu-Morioka chaotic systems. Int J Inf Sci Tech 1(1):20–29
Vaidyanathan S (2012) Adaptive control and synchronization of Shimizu-Morioka chaotic system. Int J Found Comput Sci Technol 2(4):29–42
Wang X, Li X (2010) Feedback control of the Liu chaotic dynamical system. Int J Modern Phys B 24(3):397–404
Wang MJ, Wang XY (2009) Controlling Liu system with different methods. Modern Phys Lett B 23(14):1805–1818
Wu X, Lu J, Tse CK, Wang J, Liu J (2007) Impulsive control and synchronization of the Lorenz systems family. Chaos, Solitons Fractals 31(3):631–638
Yang C, Tao CH, Wang P (2010) Comparison of feedback control methods for a hyperchaotic Lorenz system. Phys Lett A 374(5):729–732
Yassen MT (2006) Chaos control of chaotic dynamical systems using backstepping design. Chaos, Solitons Fractals 27(2):537–548
Yau HT, Chen CK, Chen CL (2000) Sliding mode control of chaotic systems with uncertainties. Int J Bifurc Chaos 10(5):1139–1147
Yau HT, Yan JJ (2004) Design of sliding mode controller for Lorenz chaotic system with nonlinear input. Chaos, Solitons Fractals 19(4):891–898
Yu W (1999) Passive equivalence of chaos in Lorenz system. IEEE Trans Circuits Syst-I: Fundam Theory Appl 46(7):876–878
Zhang H, Ma XK, Li M, Zou JL (2005) Controlling and tracking hyperchaotic Rössler system via active backstepping design. Chaos, Solitons Fractals 26(2):353–361
Zhou WN, Pan L, Li Z, Halang WA (2009) Non-linear feedback control of a novel chaotic system. Int J Control, Autom Syst 7(6):939–944
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Kocamaz, U.E., Uyaroğlu, Y., Vaidyanathan, S. (2016). Control of Shimizu–Morioka Chaotic System with Passive Control, Sliding Mode Control and Backstepping Design Methods: A Comparative Analysis. In: Vaidyanathan, S., Volos, C. (eds) Advances and Applications in Chaotic Systems . Studies in Computational Intelligence, vol 636. Springer, Cham. https://doi.org/10.1007/978-3-319-30279-9_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-30279-9_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-30278-2
Online ISBN: 978-3-319-30279-9
eBook Packages: EngineeringEngineering (R0)