Skip to main content

Big Network Analytics Based on Nonconvex Optimization

  • Chapter
  • First Online:

Part of the book series: Studies in Big Data ((SBD,volume 18))

Abstract

The scientific problems that Big Data faces may be network scientific problems. Network analytics contributes a great deal to networked Big Data processing. Many network issues can be modeled as nonconvex optimization problems and consequently they can be addressed by optimization techniques. In the pipeline of nonconvex optimization techniques, evolutionary computation gives an outlet to handle these problems efficiently. Because, network community discovery is a critical research agenda of network analytics, in this chapter we focus on the evolutionary computation based nonconvex optimization for network community discovery. The single and multiple objective optimization models for the community discovery problem are thoroughly investigated. Several experimental studies are shown to demonstrate the effectiveness of optimization based approach for big network community analytics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aggarwal, C.C.: An introduction to social network data analytics. Springer (2011)

    Google Scholar 

  2. Agrawal, R.: Bi-objective community detection (bocd) in networks using genetic algorithm. In: Contemporary Computing, pp. 5–15 (2011)

    Google Scholar 

  3. Amelio, A., Pizzuti, C.: Community mining in signed networks: a multiobjective approach. In: Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 95–99 (2013)

    Google Scholar 

  4. Amiri, B., Hossain, L., Crawford, J.: A hybrid evolutionary algorithm based on hsa and cls for multi-objective community detection in complex networks. In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 243–247 (2012a)

    Google Scholar 

  5. Amiri, B., Hossain, L., Crawford, J.W.: An efficient multiobjective evolutionary algorithm for community detection in social networks. In: 2011 IEEE Congress on Evolutionary Computation (CEC), pp. 2193–2199 (2011)

    Google Scholar 

  6. Amiri, B., Hossain, L., Crawford, J.W., Wigand, R.T.: Community detection in complex networks: multi-objective enhanced firefly algorithm. Knowl. Based Syst. 46, 1–11 (2013)

    Article  Google Scholar 

  7. Amiri, B., Hossain, L., Crowford, J.: A multiobjective hybrid evolutionary algorithm for clustering in social networks. In: Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference Companion. pp. 1445–1446 (2012b)

    Google Scholar 

  8. Arenas, A., Duch, J., Fernández, A., Gómez, S.: Size reduction of complex networks preserving modularity. New J. Phys. 9(6), 176 (2007)

    Article  MathSciNet  Google Scholar 

  9. Arenas, A., Fernández, A., Fortunato, S., Gómez, S.: Motif-based communities in complex networks. J. Phys. A: Math. Theor. 41(22), 224001 (2008a)

    Article  MathSciNet  MATH  Google Scholar 

  10. Arenas, A., Fernández, A., Gómez, S.: Analysis of the structure of complex networks at different resolution levels. New J.Phys. 10(5), 053039 (2008b)

    Article  Google Scholar 

  11. Bader, J., Zitzler, E.: Hype: an algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 19(1), 45–76 (2011)

    Article  Google Scholar 

  12. Bagrow, J.P., Bollt, E.M.: A local method for detecting communities. Phys. Rev. E 72(4), 046108 (2005)

    Article  Google Scholar 

  13. Bandyopadhyay, S., Saha, S., Maulik, U., Deb, K.: A simulated annealing-based multiobjective optimization algorithm: AMOSA. IEEE Trans. Evol. Comput. 12(3), 269–283 (2008)

    Article  Google Scholar 

  14. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008(10), P10008 (2008)

    Article  Google Scholar 

  16. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424(4), 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  17. Boguna, M., Pastor-Satorras, R., Díaz-Guilera, A., Arenas, A.: Models of social networks based on social distance attachment. Phys. Rev. E 70(5), 056112 (2004)

    Article  Google Scholar 

  18. Bollier, D., Firestone, C.M.: The promise and peril of big data. Aspen Institute, Washington, DC (2010). Communications and Society Program

    Google Scholar 

  19. Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: Maximizing Modularity is Hard (2006). arXiv preprint arXiv:physics/0608255

  20. Butun, E., Kaya, M.: A multi-objective genetic algorithm for community discovery. In: 2013 IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems (IDAACS), vol. 1. pp. 287–292 (2013)

    Google Scholar 

  21. Cai, Q., Gong, M., Ma, L., Jiao, L.: A novel clonal selection algorithm for community detection in complex networks. Comput. Intell. 1–24 (2014a)

    Google Scholar 

  22. Cai, Q., Gong, M., Ma, L., Ruan, S., Yuan, F., Jiao, L.: Greedy discrete particle swarm optimization for large-scale social network clustering. Inf. Sci. 316, 503–516 (2015)

    Article  Google Scholar 

  23. Cai, Q., Gong, M., Shen, B., Ma, L., Jiao, L.: Discrete particle swarm optimization for identifying community structures in signed social networks. Neural Netw. 58, 4–13 (2014b)

    Article  Google Scholar 

  24. Cai, Y., Shi, C., Dong, Y., Ke, Q., Wu, B.: A novel genetic algorithm for overlapping community detection. In: Advanced Data Mining and Applications, pp. 97–108 (2011)

    Google Scholar 

  25. Chen, G., Guo, X.: A genetic algorithm based on modularity density for detecting community structure in complex networks. In: Proceedings of the 2010 International Conference on Computational Intelligence and Security, pp. 151–154 (2010)

    Google Scholar 

  26. Chen, G., Wang, Y., Wei, J.: A new multiobjective evolutionary algorithm for community detection in dynamic complex networks. Math. Probl. Eng. (2013)

    Google Scholar 

  27. Chen, G., Wang, Y., Yang, Y.: Community detection in complex networks using immune clone selection algorithm. Int. J. Digit. Content Technol. Appl. 5, 182–189 (2011)

    MathSciNet  Google Scholar 

  28. Chira, C., Gog, A.: Fitness evaluation for overlapping community detection in complex networks. In: IEEE Congress on Evolutionary Computation, pp. 2200–2206 (2011)

    Google Scholar 

  29. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70(6), 066111 (2004)

    Article  Google Scholar 

  30. Coello, C., Pulido, G., Lechuga, M.: Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 256–279 (2004)

    Article  Google Scholar 

  31. Črepinšek, M., Liu, S.-H., Mernik, M.: Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput. Surv. (CSUR) 45(3), 35 (2013)

    MATH  Google Scholar 

  32. Danon, L., Díaz-Guilera, A., Arenas, A.: The effect of size heterogeneity on community identification in complex networks. J. Stat. Mech. Theory Exp. 2006(11), P11010 (2006)

    Article  Google Scholar 

  33. Danon, L., Díaz-Guilera, A., Duch, J., Arenas, A.: Comparing community structure identification. J. Stat. Mech. Theory Exp. 2005(09), P09008 (2005)

    Article  Google Scholar 

  34. Dasgupta, D., Michalewicz, Z.: Evolutionary algorithms in engineering applications. Springer Science & Business Media (2013)

    Google Scholar 

  35. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  36. Dhillon, I.S., Guan, Y., Kulis, B.: Kernel k-means: spectral clustering and normalized cuts. In: Proceedings of the 10th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 551–556 (2004)

    Google Scholar 

  37. Doreian, P., Mrvar, A.: A partitioning approach to structural balance. Soc. Netw. 18(2), 149–168 (1996)

    Article  Google Scholar 

  38. Folino, F., Pizzuti, C.: A multiobjective and evolutionary clustering method for dynamic networks. In: 2010 International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 256–263 (2010a)

    Google Scholar 

  39. Folino, F., Pizzuti, C.: Multiobjective evolutionary community detection for dynamic networks. In: Proceedings of the 12th annual conference on Genetic and evolutionary computation, pp. 535–536 (2010b)

    Google Scholar 

  40. Folino, F., Pizzuti, C.: An evolutionary multiobjective approach for community discovery in dynamic networks. IEEE Trans. Knowl. Data Eng. 26(8), 1838–1852 (2014)

    Article  Google Scholar 

  41. Fortunato, S.: Community Detect. Graphs Phys. Rep. 486(3), 75–174 (2010)

    MathSciNet  Google Scholar 

  42. Fortunato, S., Barthelemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. 104(1), 36–41 (2007)

    Article  Google Scholar 

  43. Gach, O., Hao, J.-K.: A memetic algorithm for community detection in complex networks. In: Parallel Probl. Solving Nat. PPSN XII, pp. 327–336 (2012)

    Google Scholar 

  44. Geem, Z.W., Kim, J.H., Loganathan, G.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)

    Article  Google Scholar 

  45. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. U.S.A 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  46. Gog, A., Dumitrescu, D., Hirsbrunner, B.: Community detection in complex networks using collaborative evolutionary algorithms. In: Adv. Artif. Life. pp. 886–894 (2007)

    Google Scholar 

  47. Gómez, S., Jensen, P., Arenas, A.: Analysis of community structure in networks of correlated data. Phys. Rev. E 80(1), 016114 (2009)

    Article  Google Scholar 

  48. Gong, M., Cai, Q., Chen, X., Ma, L.: Complex network clustering by multiobjective discrete particle swarm optimization based on decomposition. IEEE Trans. Evol. Comput. 18(1), 82–97 (2014)

    Article  Google Scholar 

  49. Gong, M., Cai, Q., Li, Y., Ma, J.: An improved memetic algorithm for community detection in complex networks. In: Proceedings of 2012 IEEE Congress on Evolutionary Computation, pp. 1–8 (2012a)

    Google Scholar 

  50. Gong, M., Chen, X., Ma, L., Zhang, Q., Jiao, L.: Identification of multi-resolution network structures with multi-objective immune algorithm. Appl. Soft Comput. 13(4), 1705–1717 (2013)

    Article  Google Scholar 

  51. Gong, M., Fu, B., Jiao, L., Du, H.: Memetic algorithm for community detection in networks. Phys. Rev. E 84(5), 056101 (2011a)

    Article  Google Scholar 

  52. Gong, M., Hou, T., Fu, B., Jiao, L.: A non-dominated neighbor immune algorithm for community detection in networks. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, pp. 1627–1634 (2011b)

    Google Scholar 

  53. Gong, M., Jiao, L., Du, H., Bo, L.: Multiobjective immune algorithm with nondominated neighbor-based selection. Evol. Comput. 16(2), 225–255 (2008)

    Article  Google Scholar 

  54. Gong, M., Ma, L., Zhang, Q., Jiao, L.: Community detection in networks by using multiobjective evolutionary algorithm with decomposition. Phys. A 391(15), 4050–4060 (2012b)

    Article  Google Scholar 

  55. Gong, M., Zhang, L., Ma, J., Jiao, L.: Community detection in dynamic social networks based on multiobjective immune algorithm. J. Comput. Sci. Technol. 27(3), 455–467 (2012c)

    Article  MathSciNet  MATH  Google Scholar 

  56. Grossmann, I.E.: Global Optimization in engineering design, vol. 9. Springer Science & Business Media (2013)

    Google Scholar 

  57. Guimerà, R., Danon, L., Díaz-Guilera, A.: Self-similar community structure in a network of human interactions. Phys. Rev. E 68(6), 065103 (2003)

    Article  Google Scholar 

  58. Guimerà, R., Sales-Pardo, M., Amaral, L.A.N.: Module identification in bipartite and directed networks. Phys. Rev. E 76(3), 036102 (2007)

    Article  Google Scholar 

  59. Guimerò, R., Sales-Pardo, M., Anaral, L.A.N.: Modularity from fluctuations in random graphs and complex networks. Phys. Rev. E 70(2), 025101 (2004)

    Article  Google Scholar 

  60. He, D., Wang, Z., Yang, B., Zhou, C.: Genetic algorithm with ensemble learning for detecting community structure in complex networks. In: Proceedings of the Fourth International Conference on Computer Sciences and Convergence Information Technology, pp. 702–707 (2009)

    Google Scholar 

  61. Huang, Q., White, T., Jia, G., Musolesi, M., Turan, N., Tang, K., He, S., Heath, J. K., Yao, X.: Community detection using cooperative co-evolutionary differential evolution. In: Parallel Problem Solving from Nature-PPSN XII, pp. 235–244 (2012)

    Google Scholar 

  62. Jia, G., Cai, Z., Musolesi, M., Wang, Y., Tennant, D. A., Weber, R. J., Heath, J. K., He, S.: Community detection in social and biological networks using differential evolution. In: Learning and Intelligent Optimization, pp. 71–85 (2012)

    Google Scholar 

  63. Jin, D., He, D., Liu, D., Baquero, C.: Genetic algorithm with local search for community mining in complex networks. In: 2010 22nd IEEE International Conference on Tools with Artificial Intelligence (ICTAI), vol. 1, pp. 105–112 (2010)

    Google Scholar 

  64. Kang, U., Tsourakakis, C. E., Appel, A. P., Faloutsos, C., Leskovec, J.: Radius plots for mining tera-byte scale graphs: Algorithms, patterns, and observations. In: SIAM International Conference on Data Mining (2010)

    Google Scholar 

  65. Kim, K., McKay, R.I., Moon, B.-R.: Multiobjective evolutionary algorithms for dynamic social network clustering. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, pp. 1179–1186 (2010)

    Google Scholar 

  66. Knowles, J.D., Corne, D.W.: Approxmating the nondominated front using the pareto archived evolution strategy. Evol. Comput. 8(2), 149–172 (2000)

    Article  Google Scholar 

  67. Kropivnik, S., Mrvar, A.: An analysis of the slovene parliamentary parties network. In: Ferligoj, A., Kramberger, A. (eds.) Developments in Statistics and Methodology, pp. 209–216 (1996)

    Google Scholar 

  68. Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hierarchical community structure in complex networks. New J. Phys. 11(3), 033015 (2009)

    Article  Google Scholar 

  69. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78(4), 046110 (2008)

    Article  Google Scholar 

  70. Lázár, A., Ábel, D., Vicsek, T.: Modularity measure of networks with overlapping communities. Europhys. Lett. 90(1), 18001 (2010)

    Article  Google Scholar 

  71. Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabasi, A.L., Brewer, D., Christakis, N., Contractor, N., Fowler, J., Gutmann, M., Jebara, T., King, G., Macy, M., Roy, D., Van Alstyne, M.: Social science. computational social science. Science 323(5915), 721–723 (2009)

    Article  Google Scholar 

  72. Leicht, E.A., Newman, M.E.: Community structure in directed networks. Phys. Rev. Lett. 100(11), 118703 (2008)

    Article  Google Scholar 

  73. Leskovec, J., Krevl, A.: SNAP Datasets: stanford large network dataset collection (2014). http://snap.stanford.edu/data

  74. Li, D., Xiao, L., Han, Y., Chen, G., Liu, K.: Network thinking and network intelligence. In: Web Intelligence Meets Brain Informatics, pp. 36–58. Springer (2007)

    Google Scholar 

  75. Li, J., Song, Y.: Community detection in complex networks using extended compact genetic algorithm. Soft Comput. 17(6), 925–937 (2013)

    Article  Google Scholar 

  76. Li, S., Chen, Y., Du, H., Feldman, M.W.: A genetic algorithm with local search strategy for improved detection of community structure. Complexity 15(4), 53–60 (2010)

    MathSciNet  Google Scholar 

  77. Li, X., Gao, C.: A novel community detection algorithm based on clonal selection. J. Comput. Inf. Syst. 9(5), 1899–1906 (2013)

    Google Scholar 

  78. Li, Y., Liu, G., Lao, S.-Y.: Complex network community detection algorithm based on genetic algorithm. In: The 19th International Conference on Industrial Engineering and Engineering Management, pp. 257–267 (2013)

    Google Scholar 

  79. Li, Y., Liu, J., Liu, C.: A comparative analysis of evolutionary and memetic algorithms for community detection from signed social networks. Soft Comput. 18(2), 329–348 (2014)

    Article  Google Scholar 

  80. Li, Z., Zhang, S., Wang, R.-S., Zhang, X.-S., Chen, L.N.: Quantitative function for community detection. Phys. Rev. E 77(3), 036109 (2008)

    Article  Google Scholar 

  81. Lin, C.-C., Liu, W.-Y., Deng, D.-J.: A genetic algorithm approach for detecting hierarchical and overlapping community structure in dynamic social networks. In: 2013 IEEE Wireless Communications and Networking Conference (WCNC), pp. 4469–4474 (2013)

    Google Scholar 

  82. Lipczak, M., Milios, E.: Agglomerative genetic algorithm for clustering in social networks. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 1243–1250 (2009)

    Google Scholar 

  83. Liu, C., Liu, J., Jiang, Z.: A multiobjective evolutionary algorithm based on similarity for community detection from signed social networks. IEEE Trans. Cybern. 44(12), 2274–2287 (2014)

    Article  Google Scholar 

  84. Liu, J., Zhong, W., Abbass, H.A., Green, D.G.: Separated and overlapping community detection in complex networks using multiobjective evolutionary algorithms. In: IEEE Congress on Evolutionary Computation, pp. 1–7 (2010)

    Google Scholar 

  85. Liu, X., Li, D., Wang, S., Tao, Z.: Effective algorithm for detecting community structure in complex networks based on ga and clustering. Comput. Sci. ICCS 2007, 657–664 (2007)

    Google Scholar 

  86. Lohr, S.: The age of big data. New York Times 11 (2012)

    Google Scholar 

  87. Lusseau, D., Schneider, K., Boisseau, O.J., Haase, P., Slooten, E., Dawson, S.M.: The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations. Behav. Ecol. Sociobiol. 54(4), 396–405 (2003)

    Article  Google Scholar 

  88. Ma, L., Gong, M., Liu, J., Cai, Q., Jiao, L.: Multi-level learning based memetic algorithm for community detection. Appl. Soft Comput. 19, 121–133 (2014)

    Article  Google Scholar 

  89. Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., Byers, A.H., Institute, M.G.: Big data: the next frontier for innovation, competition, and productivity (2011)

    Google Scholar 

  90. Massen, C.P., Doye, J.P.: Identifying communities within energy landscapes. Phys. Rev. E 71(4), 046101 (2005)

    Article  MathSciNet  Google Scholar 

  91. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)

    Article  Google Scholar 

  92. Mistakidis, E.S., Stavroulakis, G.E.: Nonconvex optimization in mechanics: algorithms, heuristics and engineering applications by the FEM, vol. 21. Springer Science & Business Media (2013)

    Google Scholar 

  93. Muff, S., Rao, F., Caflisch, A.: Local modularity measure for network clusterizations. Phys. Rev. E 72(5), 056107 (2005)

    Article  Google Scholar 

  94. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  95. Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74, 036104 (2006)

    Article  MathSciNet  Google Scholar 

  96. Newman, M.E.J.: Networks: An Introduction. Oxford University Press (2010)

    Google Scholar 

  97. Newman, M.E.J.: Complex Systems: A Survey (2011). arXiv preprint arXiv:1112.1440

  98. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)

    Article  Google Scholar 

  99. Nicosia, V., Mangioni, G., Carchiolo, V., Malgeri, M.: Extending the definition of modularity to directed graphs with overlapping communities. J. Stat. Mech. Theory Exp. 2009(03), P03024 (2009)

    Article  Google Scholar 

  100. Oda, K., Kimura, T., Matsuoka, Y., Funahashi, A., Muramatsu, M., Kitano, H.: Molecular interaction map of a macrophage. AfCS Res. Rep. 2(14), 1–12 (2004)

    Google Scholar 

  101. Oda, K., Matsuoka, Y., Funahashi, A., Kitano, H.: A comprehensive pathway map of epidermal growth factor receptor signaling. Mol. Syst. Biol. 1(1), 1–17 (2005)

    Article  Google Scholar 

  102. Pizzuti, C.: GA-Net: a genetic algorithm for community detection in social networks. Parallel Probl. Solving Nat. (PPSN), 5199, 1081–1090 (2008)

    Google Scholar 

  103. Pizzuti, C.: A multi-objective genetic algorithm for community detection in networks. In: 2009 ICTAI’09, 21st International Conference on Tools with Artificial Intelligence, pp. 379–386 (2009a)

    Google Scholar 

  104. Pizzuti, C.: Overlapped community detection in complex networks. GECCO 9, 859–866 (2009b)

    Article  Google Scholar 

  105. Pizzuti, C.: A multiobjective genetic algorithm to find communities in complex networks. IEEE Trans. Evol. Comput. 16(3), 418–430 (2012)

    Article  Google Scholar 

  106. Pons, P., Latapy, M.: Post-processing hierarchical community structures: quality improvements and multi-scale view. Theor. Comput. Sci. 412(8–10), 892–900 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  107. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. Proc. Natl. Acad. Sci. U.S.A. 101(9), 2658–2663 (2004)

    Article  Google Scholar 

  108. Read, K.E.: Cultures of the central highlands, new guinea. Southwest. J. Anthropol. 10(1), 1–43 (1954)

    Article  Google Scholar 

  109. Rees, B.S., Gallagher, K.B.: Overlapping community detection using a community optimized graph swarm. Soc. Netw. Anal. Min. 2(4), 405–417 (2012)

    Article  Google Scholar 

  110. Reichardt, J., Bornholdt, S.: Statistical mechanics of community detection. Phys. Rev. E 74(1), 016110 (2006)

    Article  MathSciNet  Google Scholar 

  111. Rosvall, M., Bergstrom, C.T.: An information-theoretic framework for resolving community structure in complex networks. Proc. Natl. Acad. Sci. U.S.A. 104(18), 7327–7331 (2007)

    Article  Google Scholar 

  112. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. U.S.A. 105(4), 1118–1123 (2008a)

    Article  Google Scholar 

  113. Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. 105(4), 1118–1123 (2008b)

    Article  Google Scholar 

  114. Scott, J.: Social network analysis. Sage (2012)

    Google Scholar 

  115. Shang, R., Bai, J., Jiao, L., Jin, C.: Community detection based on modularity and an improved genetic algorithm. Phys. A Stat. Mech. Appl. 392(5), 1215–1231 (2013)

    Article  Google Scholar 

  116. Shelokar, P., Quirin, A., Cordón, Ó.: Three-objective subgraph mining using multiobjective evolutionary programming. J. Comput. Syst. Sci. 80(1), 16–26 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  117. Shen, H., Cheng, X., Cai, K., Hu, M.-B.: Detect overlapping and hierarchical community structure in networks. Phys. A 388(8), 1706–1712 (2009)

    Article  Google Scholar 

  118. Shen-Orr, S.S., Milo, R., Mangan, S., Alon, U.: Network motifs in the transcriptional regulation network of escherichia coli. Nat. Genet. 31(1), 64–68 (2002)

    Article  Google Scholar 

  119. Shi, C., Wang, Y., Wu, B., Zhong, C.: A new genetic algorithm for community detection. In: Complex Sciences, pp. 1298–1309 (2009)

    Google Scholar 

  120. Shi, C., Yan, Z., Cai, Y., Wu, B.: Multi-objective community detection in complex networks. Appl. Soft Comput. 12(2), 850–859 (2012)

    Article  Google Scholar 

  121. Shi, C., Yu, P. S., Cai, Y., Yan, Z., Wu, B.: On selection of objective functions in multi-objective community detection. In: Proceedings of the 20th ACM international conference on Information and knowledge management, pp. 2301–2304. ACM (2011)

    Google Scholar 

  122. Shi, C., Yu, P.S., Yan, Z., Huang, Y., Wang, B.: Comparison and selection of objective functions in multiobjective community detection. Comput. Intell. 30(3), 562–582 (2014)

    Article  MathSciNet  Google Scholar 

  123. Shi, Z., Liu, Y., Liang, J.: PSO-based community detection in complex networks. In: Proceedings of the 2nd International Symposium on Knowledge Acquisition and Modeling, vol. 3. pp. 114–119 (2009)

    Google Scholar 

  124. Tasgin, M., Herdagdelen, A., Bingol, H.: Community detection in complex networks using genetic algorithms (2007). arXiv preprint arXiv:0711.0491

  125. Wang, F.Y., Zeng, D., Carley, K.M., Mao, W.J.: Social computing: from social informatics to social intelligence. IEEE Intell. Syst. 22(2), 79–83 (2007)

    Article  Google Scholar 

  126. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

  127. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  128. Xiaodong, D., Cunrui, W., Xiangdong, L., Yanping, L.: Web community detection model using particle swarm optimization. In: IEEE Congress on Evolutionary Computation, pp. 1074–1079 (2008)

    Google Scholar 

  129. Xie, J., Kelley, S., Szymanski, B.K.: Overlapping community detection in networks: the state-of-the-art and comparative study. ACM Comput. Surv. (CSUR) 45(4), 43 (2013)

    Article  MATH  Google Scholar 

  130. Yang, B., Cheung, W.K., Liu, J.M.: Community mining from signed social networks. IEEE Trans. Knowl. Data Eng. 19(10), 1333–1348 (2007)

    Article  Google Scholar 

  131. Yang, X.-S.: Multiobjective firefly algorithm for continuous optimization. Eng. Comput. 29(2), 175–184 (2013)

    Article  Google Scholar 

  132. Zachary, W.W.: An information flow model for confict and fission in small groups. J. Anthropol. Res. 452–473 (1977)

    Google Scholar 

  133. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  134. Zhang, S., Wang, R.-S., Zhang, X.-S.: Identification of overlapping community structure in complex networks using fuzzy c-means clustering. Phys. A 374(1), 483–490 (2007)

    Article  Google Scholar 

  135. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm. In: Proceedings of Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, pp. 95–100 (2002)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant nos. 61273317, 61422209, and 61473215), the National Top Youth Talents Program of China, and the Specialized Research Fund for the Doctoral Program of Higher Education (Grant no. 20130203110011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maoguo Gong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gong, M., Cai, Q., Ma, L., Jiao, L. (2016). Big Network Analytics Based on Nonconvex Optimization. In: Emrouznejad, A. (eds) Big Data Optimization: Recent Developments and Challenges. Studies in Big Data, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-30265-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30265-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30263-8

  • Online ISBN: 978-3-319-30265-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics