Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 571 Accesses

Abstract

Bi-dimensional networks of dissociated neurons developing in vitro and coupled to Micro-Electrode Arrays devices (MEAs) represent a valid experimental model for studying the universal mechanisms governing the formation and conservation of neuronal cell assemblies (Marom and Shahaf in Q Rev Biophys 35(1):63–87, 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beggs JM, Plenz D (2004) Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. J Neurosci 24:5216–5229

    Article  Google Scholar 

  • Behravesh E, Emami K et al (2005) Comparison of genotoxic damage in monolayer cell cultures and three-dimensional tissue-like cell assemblies. Adv Space Res 35(2):260–267

    Article  Google Scholar 

  • Birgersdotter A, Sandberg R et al (2005) Gene expression perturbation in vitro–a growing case for three-dimensional (3D) culture systems. Semin Cancer Biol 15(5):405–412

    Article  Google Scholar 

  • Chun TH, Hotary KB et al (2006) A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell 125(3):577–591

    Article  Google Scholar 

  • Cukierman E, Pankov R et al (2001) Taking cell-matrix adhesions to the third dimension. Science 294(5547):1708–1712

    Article  Google Scholar 

  • Cullen DK, Wolf JA et al (2011) Neural tissue engineering and biohybridized microsystems for neurobiological investigation in vitro (part 1). Crit Rev Biomed Eng 39(3):201–240

    Article  Google Scholar 

  • Dranias MR, Ju H et al (2013) Short-term memory in networks of dissociated cortical neurons. J Neurosci Off J Soc Neurosci 33(5):1940–1953

    Article  Google Scholar 

  • Eytan D, Marom S (2006) Dynamics and effective topology underlying synchronization in networks of cortical neurons. J Neurosci 26(33):8465–8476

    Article  Google Scholar 

  • Friedl P, Zanker KS et al (1998) Cell migration strategies in 3-D extracellular matrix: differences in morphology, cell matrix interactions, and integrin function. Microsc Res Tech 43(5):369–378

    Article  Google Scholar 

  • Gal A, Eytan D et al (2010) Dynamics of excitability over extended timescales in cultured cortical neurons. J Neurosci 30(48):16332–16342

    Article  Google Scholar 

  • Hasselmo ME (1995) Neuromodulation and cortical function: modeling the physiological basis of behavior. Behav Brain Res 67(1):1–27

    Article  Google Scholar 

  • Hindie M, Vayssade M et al (2006) Interactions of B16F10 melanoma cells aggregated on a cellulose substrate. J Cell Biochem 99(1):96–104

    Article  Google Scholar 

  • Liu H, Lin J et al (2006) Effect of 3D scaffold and dynamic culture condition on the global gene expression profile of mouse embryonic stem cells. Biomaterials 27(36):5978–5989

    Article  Google Scholar 

  • Marom S, Eytan D (2005) Learning in ex-vivo developing networks of cortical neurons. Prog Brain Res 147:189–199

    Article  Google Scholar 

  • Marom S, Shahaf G (2002) Development, learning and memory in large random networks of cortical neurons: lessons beyond anatomy. Q Rev Biophys 35(1):63–87

    Article  Google Scholar 

  • Pautot S, Wyart C et al (2008) Colloid-guided assembly of oriented 3D neuronal networks. Nat Methods 5(8):735–740

    Article  Google Scholar 

  • Pedersen JA, Swartz MA (2005) Mechanobiology in the third dimension. Ann Biomed Eng 33(11):1469–1490

    Article  Google Scholar 

  • Rieke F, Warland D et al (1997) Spikes: exploring the neural code. The MIT Press, Cambridge, Massachusetts

    MATH  Google Scholar 

  • Rolston JD, Wagenaar DA et al (2007) Precisely timed spatiotemporal patterns of neural activity in dissociated cortical cultures. Neuroscience 148(1):294–303

    Article  Google Scholar 

  • Shahaf G, Marom S (2001) Learning in networks of cortical neurons. J Neurosci 21(22):8782–8788

    Google Scholar 

  • Smalley KS, Lioni M et al (2006) Life isn’t flat: taking cancer biology to the next dimension. In Vitro Cell Dev Biol Anim 42(8–9):242–247

    Article  Google Scholar 

  • Sporns O, Tononi G (2001) Classes of network connectivity and dynamics. Complexity 7(1):28–38

    Article  MathSciNet  Google Scholar 

  • Timofeev I, Grenier F et al (2000a) Origin of slow cortical oscillations in deafferented cortical slabs. Cereb Cortex (New York, NY: 1991) 10(12):1185–1199

    Google Scholar 

  • Timofeev I, Grenier F et al (2000b) Impact of intrinsic properties and synaptic factors on the activity of neocortical networks in vivo. J Physiol, Paris 94(5–6):343–355

    Google Scholar 

  • van Pelt J, Wolters PS et al (2004) Long-term characterization of firing dynamics of spontaneous bursts in cultured neural networks. IEEE Trans Biomed Eng 51(11):2051–2062

    Article  Google Scholar 

  • Wagenaar DA, Madhavan R et al (2005) Controlling bursting in cortical cultures with closed-loop multi-electrode stimulation. J Neurosci 25(3):680–688

    Article  Google Scholar 

  • Willerth SM, Arendas KJ et al (2006) Optimization of fibrin scaffolds for differentiation of murine embryonic stem cells into neural lineage cells. Biomaterials 27(36):5990–6003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Frega .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Frega, M. (2016). Introduction. In: Neuronal Network Dynamics in 2D and 3D in vitro Neuroengineered Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-30237-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30237-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30236-2

  • Online ISBN: 978-3-319-30237-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics