Metallic Minerals, Ores, and Metals

Part of the Natural Science in Archaeology book series (ARCHAEOLOGY)


This chapter may seem somewhat unusual to those readers more accustomed to other discussions of archaeometallurgy. Typical of those researches, one often finds the focus on the metal artifact foremost with ancillary areas such as manufacturing, utilization, and provenance archaeological/geochemical) examined at various levels of detail. These emphases are important and well placed particularly from the standpoint of the materials science, but it is the aim of this chapter to characterize archaeological metals, minerals, and ores from a geological perspective. By this, we mean to discuss the geology of ancient metallurgy without any special emphasis on the end product, e.g., the metal artifact.


Cast Iron Copper Smelting Metal Artifact Arsenical Copper Wrought Iron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anderson TJ (2003) Des artisans à la campagne: carrière de meules, forge et voie gallo-romaines à Châbles (FR), vol 19. Saint-PaulGoogle Scholar
  2. Astrup EE, Martens I (2011) Studies of Viking age swords: metallography and archaeology. Gladius XXXI:203–206CrossRefGoogle Scholar
  3. Bateman AM (1950) Economic mineral deposits, 2nd edn. Wiley, New YorkGoogle Scholar
  4. Blyth PH (1977) The effectiveness of Greek armour against arrows in the Persian war (490–479 BC): an interdisciplinary enquiry. Doctoral dissertation. University of ReadingGoogle Scholar
  5. Bourgarit D (2007) Chalcolithic copper smelting. In: La Niece S, Hook D, Craddock PT (eds) Metals and mines: studies in archaeometallurgy. Archetype Publications, London, pp 3–14Google Scholar
  6. Braidwood RJ, Çambel H, Schirmer W (1981) Beginnings of village-farming communities in Southeastern Turkey: Çayönü Tepesi, 1978 and 1979. J Field Archaeol 8(1):249–258Google Scholar
  7. Brongniart A (1813) Essai de classification minéralogique des roches mélangées. J Min XXXIV:190–199Google Scholar
  8. Bronson B (1986) The making and selling of wootz, a crucible steel of India. Archeomaterials 1(1):13–51Google Scholar
  9. Carlson RL, Miller DJA (2005) Unraveling the structure and composition of the oceanic crust. Sea Technol 46(10):10–13Google Scholar
  10. Childs ST (1991) Transformations: iron and copper production in Central Africa. In: Recent trends in archaeometallurgical research. Smithsonian, pp 33–46Google Scholar
  11. Craddock PT (2001) From hearth to furnace: evidences for the earliest smelting technologies in the eastern Mediterranean. Paléorient 26:151–165CrossRefGoogle Scholar
  12. Dibner B (1958) Agricola on metals. Burndy Library, NorwalkGoogle Scholar
  13. Durman A (1988) The vučedol culture. In: Durman A (ed) Vučedol -three thousand years B.C. Muzejski pros-tor, Zagreb, pp 45–48Google Scholar
  14. Durman A (1997) Tin in Southeastern Europe? Opuscula Archaeologica Radovi Arheološkog zavoda 21(1):7–14Google Scholar
  15. Durman A (2004) Vučedolski hromi bog: zašto svi metalurški bogovi šepaju? (The lame God of Vučedol: why do all gods of metallurgy limp?). Gradski muzej VukovarGoogle Scholar
  16. Durman A (ed) (2007) One hundred Croatian archeological sites. (Zagreb: Leksikografski Zavod Miroslav Krleža, in collaboration with the Croatian Archaeological Society, 367 ppGoogle Scholar
  17. Ehrenreich RM (ed) (1991) Metals in society: theory beyond analysis. MASCA Research Papers in Science and Archaeology, 8(II). 92 ppGoogle Scholar
  18. Epstein SM (1993) Cultural choice and technological consequences: constraint of innovation in the late prehistoric copper smelting industry of Cerro Huaringa, Peru. Ph.D. Thesis. University of PennsylvaniaGoogle Scholar
  19. Frame LD (2009) Technological change in southwestern Asia: metallurgical production styles and social values during the chalcolithic and early bronze age. Ph.D. dissertation, University of ArizonaGoogle Scholar
  20. Frankel HR (2012) The continental drift controversy, vol I–IV. Cambridge University Press, CambridgeGoogle Scholar
  21. Garrison EG (1999) A history of engineering and technology, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  22. Gass IG (1968) Is the troodos massif of Cyprus a fragment of Mesozoic ocean floor? Nature 220:39–42CrossRefGoogle Scholar
  23. Glumac PD (1991) Recent trends in archaeometallurgical research. MASCA research papers in science and archaeology, 8(I). 92 ppGoogle Scholar
  24. Goldschmidt VM (1912) Die kontaktmetamorphose im Kristianiagebiet. Geologiska Föreningen i Stockholm Förhandlingar 34(7):812–819CrossRefGoogle Scholar
  25. González LR (2004) Bronces sin nombre: La metalurgia prehispánica en el Noroeste Argentino. TusQuetsGoogle Scholar
  26. Hart CJR, Mair JL, Goldfarb RJ, Groves DI (2005) Source and redox controls on metallogenic variations in intrusion-related ore systems, Tombstone-Tungsten Belt, Yukon Territory. In: Ishihara S, Stephens WE, Harley SL, Arima M, Nakajima T (eds) Fifth Hutton symposium; the origin of granites and related rocks. Special Paper, 389. Geological Society of America, pp 339–356Google Scholar
  27. Hauptman A (1989) The earliest periods of copper metallurgy in Feinan, Jordan. In: Hauptmann A, Pernika E, Wagner GA (eds) Proccedings of the International Symposium, Old World Archaeometallurgy. Heidelberg, 1987, Der Anschnitt, Beihaft 7. Deutsches Bergbau-Museum, Bochum, pp 119–135Google Scholar
  28. Hauptmann A, Weisgeberand G, Knauf EA (1985) Archäolometallugische Untersuchungen zur Kupferverhüttung der frühen Bronzezeit in Feinan, Wadi Arabah, Jordanien. Jahrb Römisches-Germanisches Zentralmuseums 35:510–516Google Scholar
  29. Henderson J (2000) The science and archaeology of materials. Routledge, LondonGoogle Scholar
  30. Herz N, Garrison EG (1998) Geological methods for archaeology. Oxford University Press, New YorkGoogle Scholar
  31. Hoover H (1912) De re Metallica. The Mining Magazine, LondonGoogle Scholar
  32. Hošek J, Košta J, Bárta P (2012) The metallographic examination of sword no. 438 as part of a systematic survey of swords from the early medieval stronghold of Mikulčice, Czech Republic. Gladius XXXII:87–102Google Scholar
  33. Hosler D (2014) Mesoamerican metallurgy: the perspective from the west. In: Roberts BW, Thornton CP (eds) Archaeometallurgy in global perspective. Springer, New York, pp 329–360CrossRefGoogle Scholar
  34. Hutchinson RW (1965) Genesis of Canadian massive sulphides by comparison to Cyprus deposits. Transactions LXVIII:286–300, The Canadian Mining and Metallurgical Bulletin. MontrealGoogle Scholar
  35. Jones JE (1982) The Laurion silver mines: a review of recent researches and results. Greece and Rome (Second Series) 29(02):169–183CrossRefGoogle Scholar
  36. Jovanovic B (1988) Early metallurgy in Yugoslavia. In: The beginning of the use of metals and alloys. pp 69–79Google Scholar
  37. Kafafi ZA (2014) New insights on the copper mines of Wadi Faynan/Jordan. Palest Explor Q 146(4):263–280CrossRefGoogle Scholar
  38. Keith M, Haase KM, Schwarz-Schampera U, Klemd R (2014) Effects of temperature, sulfur and oxygen fugacity on the composition of spahlerite from submarine hydrothermal vents. Geology 42:699–702CrossRefGoogle Scholar
  39. Kesler SE (1973) Copper, molybdenum and gold abundances in porphyry copper deposits. Econ Geol 68:106–112CrossRefGoogle Scholar
  40. Killick D (1991) The relevance of recent African iron-smelting practice to reconstructions of prehistoric smelting technology. In: Recent trends in archaeometallurgical research. pp 47–54Google Scholar
  41. Killick D (2009) Cairo to Cape: the spread of metallurgy through eastern and southern Africa. J World Prehistory 22:399–414CrossRefGoogle Scholar
  42. Killick D (2014) From ores to metals. In: Roberts BW, Thornton CP (eds) Archaeometallurgy in global perspective. Springer, New York, pp 11–45CrossRefGoogle Scholar
  43. Lechtman H (2014) Andean metallurgy in prehistory. In: Roberts BW, Thornton CP (eds) Archaeometallurgy in global perspective. Springer, New York, pp 361–422CrossRefGoogle Scholar
  44. Lechtman H, Klein S (1999) The production of copper-arsenic alloys (arsenic bronze) by cosmelting: modern experiment and ancient practice. J Archaeol Sci 26(5):497–526CrossRefGoogle Scholar
  45. Lespez L, Papadopolous S (2008) Etude geoarchaeologique du site d’Aghios Ioannis a Thasos. BCH 132:667–692Google Scholar
  46. Levy TE, Najjar M, Ben-Josef E (2014) New insights into the iron age archaeology of Edom, Southern Jordan, vol 35, Monumenta Archaeologica. University of New Mexico Press, AlbuequerqueGoogle Scholar
  47. Lutz J, Pernicka E (2013) Prehistoric copper from the Eastern Alps. In: Tykot RH (ed) Proceedings of the 38th International Symposium on Archaeometry – May 10th–14th 2010, Tampa. Open J Archaeometry 1:e25Google Scholar
  48. Meinert LD, Dipple GM, Nicolescu S (2005) World skarn deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic geology 100th anniversary volume. Society of Economic Geologists, Littleton, pp 299–336Google Scholar
  49. Meixnar H, Paar W (1982) New observations on ore formation and weathering of the Kamariza Deposit, Laurion, SE Attica (Greece). In: Ore genesis. special publication of the society for geology applied to mineral deposits, vol 2. pp 760–776Google Scholar
  50. Mellaart J (1966) Excavations at Catal Hüyük, 1965: fourth preliminary report. Anatol Stud 16:165–191CrossRefGoogle Scholar
  51. Muhly JD (1985) Sources of tin and the beginnings of bronze metallurgy. Am J Archaeol 89:275–291CrossRefGoogle Scholar
  52. Muhly JD (2006) Chrysokamino in the history of early metallurgy. Hesperia Suppl 155–177Google Scholar
  53. Nerantzis N, Papadopolous S (2013) Reassessment and new data on the diachronic relationship of Thasos Island with its indigenous metal resources; a review. Archaeol Anthropol Sci 5:183–196CrossRefGoogle Scholar
  54. Notis MR (2014) Metals. In: Roberts BW, Thornton CP (eds) Archaeometallurgy in global perspective. Springer, New York, pp 47–66CrossRefGoogle Scholar
  55. Oxburgh ER (1968) An outline of the geology of the central Eastern Alps. Proc Geol Assoc 79:1–4CrossRefGoogle Scholar
  56. Papadopolous S (2008) Silver and copper production practices in the prehistoric settlement of Limenaria, Thasos. In: Tzachilli I (ed) Aegean metallurgy in the bronze age, proceedings of an international symposium held at the University of Crete. Ta Pragmata, Rethymnon, pp 59–67Google Scholar
  57. Pernicka et al (1997)Google Scholar
  58. Perret S, Serneels V (2006) Technological characterisation and quantification of a large-scale iron smelting site in Fiko (Dogon plateau, Mali). Proceedings actes ISA, pp 453–463Google Scholar
  59. Preuschen E (1973) Estrazione rninerarie dell’eta dal Bronzo nel Trentino. Prehist Alpina 9:113–150Google Scholar
  60. Radivojevic M (2012) On the origins of metallurgy in Europe: metal production in the Vinca Culture. Doctoral thesis, UCL (University College London)Google Scholar
  61. Rono PA (1984) Hydrothermal mineralization at seafloor spreading centers. Earth Sci Rev 20:1–104CrossRefGoogle Scholar
  62. Rothenberg B, Merkel J (1995) Late Neolithic copper smelting in the Arabah. Inst Archaeo-Metall Stud Newsl 19:1–17Google Scholar
  63. Rychner V, Kläntschi N (1995) Arsenic, nickel et antimoine. Cahiers d’Archéologie. Romande No.63, Tome 1. LausanneGoogle Scholar
  64. Schmidt PR (1981) The origins of iron smelting in Africa: a complex technology in Tanzania (No. 1). Department of Anthropology, Brown UniversityGoogle Scholar
  65. Sherratt S (2000) Catalogue of Cycladic antiquities in the Ashmolean Museum: the captive spirit, vol 1. Oxford University Press, OxfordGoogle Scholar
  66. Shimada I (2000) The late Prehispanic coastal states. In: Minelli LL (ed) The Inca world. University of Oklahoma Press, Norman, pp 49–64, 97–110Google Scholar
  67. Shimada I, Merkel J (1991) Copper-alloy metallurgy in ancient Peru. Sci Am 265:80–86CrossRefGoogle Scholar
  68. Steinmann G (1927) Die ophiolitischen Zonen in den mediterranen Kettengebirgen, translated and reprinted by Bernoulli and Friedman. In: Dilek, Newcomb (eds) Ophiolite concept and the evolution of geologic thought. Geological Society of America Special Publication 373, 77–91Google Scholar
  69. Wenner D, van der Merwe N (1987) Mining for the lowest grade ore: traditional iron production in northern Malawi. Geoarchaeology 2(3):199–216CrossRefGoogle Scholar
  70. Williams A (2009) A metallurgical study of some Viking swords. Gladius XXIX:121–184CrossRefGoogle Scholar
  71. Zuffardi P (1977) Ore/mineral deposits related to the Mesozoic ophiolites in Italy. In: Ridge JD (ed) IAGOD 5th symposium, proc. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp 314–323Google Scholar
  72. Roberts BW, Thornton CP (2014) Archaeometallurgy in global perspective. Springer Science+ Business Media, New YorkCrossRefGoogle Scholar
  73. Pernicka E, Begemann F, Schmitt-Strecker S, Wagner GA (1993) Eneolithic and Early Bronze Age copper artefacts from the Balkans and their relation to Serbian copper ores. Praehistorische Zeitschrift 68(1):1–54CrossRefGoogle Scholar
  74. Pigott VC (1999). The archaeometallurgy of the Asian old world, vol 16. U. Penn Museum of ArchaeologyGoogle Scholar
  75. van der Merwe NJ, Avery DH (1982) Pathways to steel. Am Sci 70:146–155Google Scholar
  76. Rostoker RW, Pigott VC, Dvorak J (1989) Direct reduction of copper metal by oxide-sulphide mineral interaction. Archeomaterials 3:69–87Google Scholar
  77. Budd P, Gale D, Pollard AM, Thomas RG, Williams PA (1993) Evaluating lead isotope data: further observations. Archaeometry 35:241–263CrossRefGoogle Scholar
  78. Wertime TA (1978) The search for ancient tin: the geographic and historic boundaries. In: Franklin A, Odin JS, Wertime TA (eds) The search for ancient tin. U.S. Government Printing Office, Washington, DC, pp 1–6Google Scholar
  79. Renfrew C, Gimbutas M, Elster ES (eds) (2003) Excavations at Sitagroi: a prehistoric village in Northeast Greece, vol 2. Cotsen Institute of Archaeology, Los AngelesGoogle Scholar
  80. Hedges REM, Housley RA, Bronk CR, Van Klinken GJ (1990) Radiocarbon dates from the Oxford AMS system: Archaeometry Dateiist 11. Archaeometry 32(2):211–237CrossRefGoogle Scholar
  81. Forbes RJ (1964) Metallurgy in antiquity: a notebook for archaeologists and technologists, vol 8. Brill Archive, LeidenGoogle Scholar
  82. Craddock PT (1980) The composition of copper produced at the ancient smelting camps in the Wadi Timna, Israel. In: Craddock PT (ed.) Scientific studies in early mining and extractive metallurgy. British Museum Research Laboratory, 165 ffGoogle Scholar
  83. Souckova-Sigelová J (2001) Treatment and usage of iron in the Hittite Empire in the 2nd millennium BC. Mediterranean Archaeol 1:189–193Google Scholar
  84. van der Merwe NJ, Avery DH (1987) Science and magic in African technology: traditional iron smelting in Malawi. Africa 57(2):143–172CrossRefGoogle Scholar
  85. Schmidt PD (1978) Historical archaeology: a structural approach in an African Culture. Greenwood Press, WestportGoogle Scholar
  86. Carr Donald D, Herz N (1989) Concise encyclopedia of mineral resourcesGoogle Scholar
  87. Richards JP (2011) Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geol Rev 40(1):1–26CrossRefGoogle Scholar
  88. Jugo PJ (2009) Sulfur content at sulfide saturation in oxidized magmas. Geology 37:415–418. doi: 10.1130/G25527A.1 CrossRefGoogle Scholar
  89. Robertson AH (2006) Contrasting modes of ophiolite emplacement in the Eastern Mediterranean region. Geol Soc London Memoirs 32(1):235–261CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of GeologyUniversity of GeorgiaAthensUSA

Personalised recommendations