Advertisement

Instrumental Analytical Techniques for Archaeological Geology

Chapter
  • 954 Downloads
Part of the Natural Science in Archaeology book series (ARCHAEOLOGY)

Abstract

A simple search of either modern scholarly or popular scientific literature confirms the relevance of chemical analyses to archaeology. Chemical analyses are not only used to determine the chemical makeup of an artifact but also to reveal clues to age, diet, and health when applied to both organic and inorganic materials. Chemistry is equally important in the preservation and restoration of archaeological materials. The first use of chemistry in the study of artifacts can be traced to German chemist Martin Heinrich Klaproth’s 1796 studies of Greek and Roman coins, other metal artifacts, and some Roman glass in which he pioneered the use of gravimetric analysis (Goffer 2006). Gravimetric analysis is the determination of an element through the measurement of the weight of the insoluble product of a reaction with that element. Since Klaproth’s first foray, there have been numerous examples of the application of analytical chemistry to archaeological materials of all sorts by historical figures in both chemistry and physics—Sir Humphrey Davy, Jon Davy (Sir Humphrey’s brother), Jöns Jakob Berzelius, Jon Voelker, Michael Faraday, Marcelin Berthelot, and Friedrich August von Kekulè (various in Meschel 1980; Goffer supra; and Pollard and Heron 1996).

Keywords

Electron Spin Resonance Magnetic Susceptibility Atomic Absorption Spectroscopy Neutron Activation Analysis Energy Dispersive Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abbe MB (2013) An Archaeo logical description of the Richmond Caligula. In: Frischer B, Schertz P (eds) Caligula 3-D: Man, Myth, Emperor. Proceedings of the international symposium on the Richmond Caligula. Virtual World Heritage Sculpture Laboratory; Brill Press, LeidenGoogle Scholar
  2. Akridge DG, Benoit PH (2001) Luminescence properties of chert and some archaeological applications. J Archaeol Sci 28:143–151CrossRefGoogle Scholar
  3. Allen DF (1980) The coins of the ancient Celts. In: Nash D (ed) Edinburgh University PressGoogle Scholar
  4. Ambroz JA, Glasscock MD, Skinner CE (2001) Chemical differentation of obsidian within the Glass Buttes complex. J Archaeol Sci 28:741–746CrossRefGoogle Scholar
  5. Arnold DE, Neff H, Bishop RL, Glascock MD (1999) Testing interpretive assumptions of neutron activation analysis. In: Chilton ES (ed) Material meanings. The University of Utah Press, Salt Lake CityGoogle Scholar
  6. Artioli G, Angelini I (2011) Mineralogy and archaeometry: fatal attraction. Eur J Mineral 23(6):849–855CrossRefGoogle Scholar
  7. Baïetto V, Villeneuve G, Schvoerer M, Bechtel F, Herz N (1999) Investigation of electron paramagnetic resonance peaks in some powdered white marble. Archaeometry 41(2):253–265CrossRefGoogle Scholar
  8. Barbin V, Ramseyer K, Burns SJ, Decrouez D, Maier JL, Chamay J (1991) Cathodluminescence signature of white marble artefacts. Mat Res Soc Symp Proc 185:299–308CrossRefGoogle Scholar
  9. Barbin V, Ramseyer K, Decrovez D, Burns SJ, Chambay J, Maier JL (1992) Cathodlumicescence of white marbles: an overview. Archaeometry 34(2):175–183CrossRefGoogle Scholar
  10. Bishop RL (1992) Comments on section II: variation, characterization of ceramic pastes in archaeology. In: Neff H (ed) Monographs in world archaeology, vol 7. Prehistory Press, Madison, pp 167–170Google Scholar
  11. Bond G, Broecker W, Johnson S, McMamus J, Labeyrie L, Jouzel L, Bonani G (1993) Correlation between climate records from North Atlantic sediments and Greenland ice. Nature 365:143–147CrossRefGoogle Scholar
  12. Ciliberto E, Spoto G (2000) Modern analytical methods in art and archaeology. Wiley, New YorkGoogle Scholar
  13. Charters S, Evershed RP, Goad LJ, Leyden A, Blinkhorn PW, Denham V (1993) Quantification and distribution of lipid in archaeological ceramics: implications for sampling potsherds for organic residue analysis and the classification of vessel use. Archaeometry 35(2):211–223CrossRefGoogle Scholar
  14. Chevallier P, Legrand F, Gruel K, Brissaud I, Tarrats-Saugnac A (1993) Étude par rayonnement synchrotron de moules à alvéoles de la Tène finale trouvés à Villeneuve-St-Germain et au Mont-Beuvray. Revue d’archéométrie 17:75–88CrossRefGoogle Scholar
  15. Collon P, Wiescher M (2012) Accelerated ion beams for art forensics. Phys Today 65(1):58–59CrossRefGoogle Scholar
  16. Del Monte M, Ausset P, Lefevre RA (1998) Traces of ancient colors on Trajan’s Column. Archaeometry 40(2):403–412CrossRefGoogle Scholar
  17. Descantes C, Neff H, Glasscock MD, Dickinson WR (2001) Chemical characterization of Micronesian ceramics through instrumental neutron activation analysis. A preliminary provenance study. J Archaeol Sci 28:1185–1190CrossRefGoogle Scholar
  18. Douglas MC (2000) An electron microprobe study of 19th century staffordshire glazes and pigments including those of the spode pottery works. Unpublished Masters thesis. University of Georgia, AthensGoogle Scholar
  19. Dubessy J, Caumon M-C, Rull F (2102) Raman spectroscopy applied to earth sciences and cultural heritage. EMU Notes in Mineralogy, vol 12. European Mineralogical UnionGoogle Scholar
  20. Dunnell RC, McCutcheon PT, Ikeya M, Toyoda S (1994) Heat treatment of Mill Creek and Dover cherts on the Malden Plain, southeast Missouri. J Archaeol Sci 21(1):79–89CrossRefGoogle Scholar
  21. Emerson T, Farnsworth K, Wisseman S, Hughes R (2013) The allure of the exotic: reexamining the use of local and distant pipestone quarries in Ohio Hopewell Pipe Caches. Am Antiqu 78(1):48–67CrossRefGoogle Scholar
  22. Ellwood BB, Harrold FB, Marks AE (1994) Site identification and correlation using geoarchaeological methods at the CabeHo do Porto Marinlo (CPM) locality Rio Maior. Portugal. J Archaeol Sci 21(6):779–784CrossRefGoogle Scholar
  23. Ellwood BB, Peter DE, Balsam W, Schieber J (1995) Magnetic and geochemical variations as indicators of paleoclimate and archaeological site evolution: examples from 41 TR68, Fort Worth, Texas. J Archaeol Sci 22(3):409–415CrossRefGoogle Scholar
  24. Faure G (1986) Principles of isotope geology. Wiley, New YorkGoogle Scholar
  25. Freestone IC, Middleton AP (1987) Mineralogical applications of the analytical SEM in archaeology. Mineral Mag 51:21–31CrossRefGoogle Scholar
  26. Garrison EG (2001) Physics and archaeology. Phys Today 54:32–36CrossRefGoogle Scholar
  27. Garrison EG, Rowlett R, McKown D (1977) Neutron activation analysis of coins and coin-molds of the Titelberg. Paper presented at the 1977 Archaeometry Symposium. University of Pennsylvania, PhiladelphiaGoogle Scholar
  28. Gendron F, Smith DC, Gendron-Badou A (2002) Discovery of jadeite-jade in Guatemala confirmed by non-destructive Raman microscopy. J Archaeol Sci 29:837–851CrossRefGoogle Scholar
  29. Gerrard MC (1991) Sedimentary petrology and the archaeologist: the study of ancient ceramics. In: Developments in sedimentary provenance studies. In: Morton AC, Todd SP, Haughton DW (eds) Geological society special publication 57, pp 189–197Google Scholar
  30. Glasscock MD (1992) Characterization of archaeological ceramics by neutron activitation analysis and multi-variate statistics. In: Neff H (ed) Chemical characterization of ceramic pastes in archaeology, vol 7, Monographs in World Archaeology. Prehistory Press, Madison, pp 11–26Google Scholar
  31. Glasscock MD, Neff H, Cogswell J, Herrera RS (1996) Neutron activation analysis for archaeological applications. Unpublished ms. Missouri University Research Reactor Archaeometry laboratory, ColumbiaGoogle Scholar
  32. Glasscock M, Speakman RJ, Popelka-Filcoff RS (2007b) Archaeological chemistry: analytical techniques and archaeological interpretation, ACS Symposium Series 969. American Chemical Society, Washington, DCCrossRefGoogle Scholar
  33. Glassrock MD, Neff H, Stryker KS, Johnson TN (1994) Sourcing archaeological obsidian by abbreviated NAA procedure. J Radioanal Nucl Chem Artic 180:29–35CrossRefGoogle Scholar
  34. Goffer Z (1980) Archaeological chemistry: a sourcebook on the applications of chemistry to archaeological. Wiley, New YorkGoogle Scholar
  35. Goffer Z (2006) Archaeological chemistry, 2nd edn, vol 170. WileyGoogle Scholar
  36. Goffer Z (2007) Archaeological chemistry, 2nd edn. Wiley-Interscience, New YorkCrossRefGoogle Scholar
  37. Gratuze B, Goivagnoli A, Banadon JN, Telouk P, Imbert JL (1993) Aport de la méthode ICP-MS couplée à l’ablation laser pour la caractérisation des archéomatériaux. Revue d’archéometrie 17:89–104CrossRefGoogle Scholar
  38. Greenough JD, Dobosi G, Owen JV (1999) Fingerprinting ancient Egyptian quarries: preliminary results using laser ablation microprobe-inductively coupled plasma-mass spectroscopy. Archaeometry 41(2):227–238CrossRefGoogle Scholar
  39. Gunderson JH (1987) Archeology of the high plains. Cultural resource series no. 19. Bureau of Land Management, Colorado State Office, DenverGoogle Scholar
  40. Harbottle G (1976) Activation analysis in archaeology. Radiochemistry 3:33–72, The Chemical Society. LondonCrossRefGoogle Scholar
  41. Heaney PJ (1995) Moganite as an indicator for vanished evaporites: a testament reborn? J Sediment Res A65:633–638Google Scholar
  42. Heard P (1996) Cathodluminescence-interesting phenomenon on useful technique? Microsc Anal 16:25–27Google Scholar
  43. Henderson J (2000) The science and archaeology of materials. Routledge, LondonGoogle Scholar
  44. Herz N (1987) Carbon and oxygen isotopic ratios: a data base for classical Greek and Roman marble. Archaeometry 29(1):35–43CrossRefGoogle Scholar
  45. Herz N, Garrison EG (1998) Geological methods for archaeology. Oxford University Press, New YorkGoogle Scholar
  46. Herz N, Pike S (2005) Isotopic signatures and marble consanguinity: hellenistic aphrodites and Philadelphia franklins. Archaeological Institute of America Annual Meeting, 6–9 Jan 2005, BostonGoogle Scholar
  47. Hoard RJ, Holen SR, Glasscock MD, Neff H, Elam JM (1992) Neutron activation analysis of stone from the Chadron formation and a Clovis site on The Great Plains. J Archaeol Sci 19:655–665CrossRefGoogle Scholar
  48. Holton I (2012) Is energy-dispersive spectroscopy in SEM a substitute for electron probe microanalysis? Microsc Anal 26(4):S4–S7Google Scholar
  49. Ikeya M (1985) Electron spin resonance. In: Rutter NW (ed) Dating methods of pleistocene deposits and their problems. Geoscience Canada reprint series, vol 2. pp 73–87Google Scholar
  50. Jarvis KE, Gray AL, Houk RS (1992) Handbook of inductively coupled plama mass spectrometry. Blackie, GlasgowCrossRefGoogle Scholar
  51. Jercher M, Pring A, Jones PG, Raven MD (1998) Rietveld x-ray diffraction and x-ray fluorescense analysis of Australian aboriginal ochres. Archaemetry 40:383–401CrossRefGoogle Scholar
  52. Jones AA (1991) X-ray fluoresence analysis. In: Smith KA (ed) Soil analysis: modern instrumental techniques, 2nd edn. Marcel Dekker, New York, pp 287–324Google Scholar
  53. Kennett JP, Baldauf JG et al (1994) Proc. ODP, International Reports, 146 (Part 2): College Station, Texas (Ocean Drilling Program)Google Scholar
  54. Kennett DJ, Neff H, Glasscock MD, Mason AZ (2001) Interface – archaeology and technology. A geochemical revolution: inductively coupled plasma mass spectroscopy. SAA Archeol Rec 1:22–26Google Scholar
  55. Killick D (2014) From ores to metals. In: Roberts BW, Thornton CP (eds) Archaeometallurgy in global perspective. Springer, New York, pp 11–45CrossRefGoogle Scholar
  56. Klockenkemper R, Bubert H, Hasler K (1999) Detection of near-surface silver enrichment on Roman coins. Archaeometry 41(2):311–320CrossRefGoogle Scholar
  57. Kukla G, Heller F, Liu X, Xu M, Liu TS, An ZS (1988) Pleistocene climates in China dated by magnetic susceptibility. Geology 16:811–814CrossRefGoogle Scholar
  58. LeBlanc G (2001) A review of EPA sample preparation techniques fro organic compounds of liquid and solid samples. LC-GC 19:1120–1121Google Scholar
  59. LeBorgne P (1960) Influence du fer sur les properties magnetiques du sol et sur celles du schiste et du granite. Ann Geophys 6(2):159–195Google Scholar
  60. Linderholm J, Lundberg E (1994) Chemical characterization of various archaeological soil samples using main and trace elements determined by inductively coupled plasma atomic emission spectrometry. J Archaeol Sci 21:303–314CrossRefGoogle Scholar
  61. Linderholm J (2007) Soil chemical surveying: a path to a deeper understanding of prehistoric sites and societies in Sweden. Geoarchaeology 22(4):417–438CrossRefGoogle Scholar
  62. Liritzis I, Zacharias N (2011) Portable XRF of archaeological artifacts: current research, potentials and limitations. In: X-ray fluorescence spectrometry (XRF) in geoarchaeology. Springer, New York, pp 109–142CrossRefGoogle Scholar
  63. Loy TH, Hardy BL (1992) Blood residue analysis of 90,000-year-old stone tools from Tabun Cave, Israel. Antiquity 66(250):24–35CrossRefGoogle Scholar
  64. Maggetti M, Galetti G, Schwandler G, Picon M, Wessicken R (1981) Campanian pottery: the nature of the black coating. Archaeometry 23:199–207CrossRefGoogle Scholar
  65. Majewski T, O’Brein MJ (1987) The use and misuse of nineteenth-century English and American ceramics in archaeological analysis. Adv Archaeol Method Theory 11:97–209Google Scholar
  66. Malainey ME, Przybylski R, Sheriff BL (1999) Identifying the former contacts of late Precontact period pottery vessels from Western Canada using gas chromatography. J Archaeol Sci 26(4):425–438CrossRefGoogle Scholar
  67. Mallory-Greenough LM, Greenough JD, Owen JV (1998) Provenance of temper in a New Kingdom Egyptian pottery sherd: evidence from the petrology and mineralogy of basalt fragments. Geoarchaeology 11Google Scholar
  68. Mallory-Greenough LM, Greenough JD, Owen JV (1998) New data for old pots: trace-element characterization of ancient Egyptian pottery using ICP-MS. J Archaeol Sci 38Google Scholar
  69. Margolis SV (1989) Authenticating ancient marble sculpture. Sci Am 260(6):104–110CrossRefGoogle Scholar
  70. Marmet E, Bina M, Fedoroffand N, Tabbagh A (1999) Relationships between human activity and the magnetic properties of soils: a case study in the medieval site of Roissy-en-France. Archaeol Prospect 6:161–170CrossRefGoogle Scholar
  71. Maslin MA (2000) North Atlantic iceberg armadas. Sci Spectra 22:40–50Google Scholar
  72. Meschel SV (1980) Chemistry and archaeology: a synergism. Chemtech 10(7):404–410Google Scholar
  73. Mullins CE (1974) The magnetic properties of the soil and their application to archaeological prospecting. Archaeo-Physica 5:144–148Google Scholar
  74. Neff H, Glascock MD (1995) The state nuclear archaeology in North America. J Radioact Nucl Chem 196:275–286CrossRefGoogle Scholar
  75. Nikischer T (1999) Modern mineral identification techniques, part I. WDS and EDS. Mineral Rec 30:297–300Google Scholar
  76. Ostrooumov M (2009) Infrared reflection spectroscopic analysis as a non-destructive method of characterizing minerals and stone materials in geoarchaeological and archaeometric applications. Geoarchaeology 24(5):619–637CrossRefGoogle Scholar
  77. Owen JV, Hansen D (1996) Compositional constraints on the identification of eighteenth-century porcelain sherds for Fort Beauséjour, New Brunswick, and Grassy Island, Nova Scotia, Canada. Hist Archaeol 30(4):88–100Google Scholar
  78. Palmer JW, Hollander MG, Rodgers PSZ, Benjamin TM, Duffy CJ, Lambert JB, Brown JA (1998) Pre-Columbian metallurgy: technology, manufacture, and microprobe analyses of copper bells from the greater southwest. Archaeometry 40(2):361–382CrossRefGoogle Scholar
  79. Patel SB, Hedges REM, Kilner JA (1998) Surface analysis of archaeological obsidian by SIMS. J Archaeol Sci 25(10):1047–1054CrossRefGoogle Scholar
  80. Pérez JM, Esteve-Tébar R (2004) Pigment identification in Greek pottery by Raman spectroscopy. Archaeometry 46(4):607–614CrossRefGoogle Scholar
  81. Picouet P, Magnetti M, Pipponnier P, Schroerer M (1999) Cathodluminescence spectroscopy of quartz grains as a tool for ceramic provenance. J Archaeol Sci 23(4):619–632Google Scholar
  82. Pike SH (2000) Archaeological geology and geochemistry of Pentelic Marble, Mount Pentelikon, Attica. Unpublished Ph.D. dissertation. University of GeorgiaGoogle Scholar
  83. Pollard AM, Heron C (1996) Archaeological chemistry. The Royal Chemical Society, CambridgeGoogle Scholar
  84. Potts PJ, Webb PC, Watson JS (1985) Energy dispersive x-ray fluorescence analysis of silicate rocks; comparison with wavelength-dispersive performance. Analyst 110:507–513CrossRefGoogle Scholar
  85. Pretola JP (2001) A feasibilitu study using silica polymorph ratios for sourcing chert and chalcedony lithic materials. J Archaeol Sci 28:721–739CrossRefGoogle Scholar
  86. Price TD (ed) (1989) The chemistry of prehistoric human bone. Cambridge University Press, Cambridge, UKGoogle Scholar
  87. Ramseyer K, Fischer J, Matter T, Eberhardt P, Geiss J (1989) A cathodluminescence microscope for low intensity luminescence. J Sediment Petrol 59:619–622CrossRefGoogle Scholar
  88. Reed SJB (1996) Electron microprobe analysis and scanning electron microscopy in geology. Cambridge University Press, CambridgeGoogle Scholar
  89. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71CrossRefGoogle Scholar
  90. Rigler M, Longo W (1994) High voltage scanning electron microscopy theory and applications. Microsc Today 94(5):2Google Scholar
  91. Robbiola L, Fiaud C (1992) Apport de l’analyse statistique des produits de corrosion a la comprehension des processes de degradation des bronzes archeologiques. Rev d’Archϑometrie 16:109–119Google Scholar
  92. Robinson JW (1995) Undergraduate instrumental analysis, 5th edn. Marcel Dekker, New YorkGoogle Scholar
  93. Rowlett RM, Thomas HL, Rowlett ESJ, Stout SD (1982) Stratified iron age house floors on the Titelberg, Luxembourg. J Field Archaeol 9(3):301–312Google Scholar
  94. Rychner V, Kläntschi N (1995) Arsenic, nickel et antimoine. Cahiers d’Archéologie. Romande No.63, Tome 1. LausanneGoogle Scholar
  95. Samford P (1997) Response to the market: dating English underglaze transfer printed wares. Hist Archaeol 31(2):1–30Google Scholar
  96. Sayre EV, Dodson RW (1957) Neutron activation study of Mediterranean potsherds. Am J Archaeol 61:135–141CrossRefGoogle Scholar
  97. Scott DA (2001) The application of scanning X‐ray fluorescence microanalysis in the examination of cultural materials. Archaeometry 43(4):475–482CrossRefGoogle Scholar
  98. Sealy JC, Van der Merwe NJ (1985) Isotopic assessment of human diets in the southwestern Cape, South Africa. Nature 315:138–140CrossRefGoogle Scholar
  99. Seidov D, Maslin MA (1999) Collapse of the north Atlantic deep water circulation during the Heinrich events. Geology 27:23–26CrossRefGoogle Scholar
  100. Smith GD, Clark RJ (2004) Raman microscopy in archaeological science. J Archaeol Sci 31(8):1137–1160CrossRefGoogle Scholar
  101. Smith GD, Clark RJH (2004) Raman spectroscopy in archaeological science. J Archaeol Sci 31:1137–1160CrossRefGoogle Scholar
  102. Shackley MS (1998) Gamma rays, x-rays and stone tools: some recent advances in archaeological geochemistry. J Archaeol Sci 25:259–270CrossRefGoogle Scholar
  103. Shackley MS (ed) (2011a) X-ray fluorescence spectrometry (XRF) in geoarchaeology. Springer, New YorkGoogle Scholar
  104. Shackley MS (2011b) An introduction to X-ray fluorescence (XRF) analysis in archaeology. In: Shackley MS (ed) X-ray fluorescence spectrometry (XRF) in geoarchaeology. Springer, New York, pp 7–44CrossRefGoogle Scholar
  105. Sharma PV (1997) Environmental and engineering geophysics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  106. Shoval S, Beck P (2005) Thermo-FTIR spectroscopy analysis as a method of characterizing ancient ceramic technology. J Therm Anal Calorim 82:609–616CrossRefGoogle Scholar
  107. Skaggs S (2007) Lead isotope analysis of Roman curse tablets. In: Glasscock M, Speakman RJ, Popelka-Filcoff RS (eds) Archaeological chemistry: analytical techniques and archaeological interpretation, vol 969, ACS Symposium Series. American Chemical Society, Washington, DC, pp 311–335CrossRefGoogle Scholar
  108. Skaggs S, Norman N, Garrison E, Coleman D, Bouhlel S (2012) Local mining or lead importation the Roman province of Africa Proconsularis? Lead isotope analysis of curse tablets from Roman Carthage, Tunisia. J Archaeol Sci 39(4):970–983CrossRefGoogle Scholar
  109. Singleton KL, Odell GH, Harris TM (1994) Atomic absorption spectrometry analysis of ceramic artefacts from a protohistoric site in Oklahoma. J Archaeol Sci 21:343–358CrossRefGoogle Scholar
  110. Speakman, Hunt (2014)Google Scholar
  111. Speakman RJ, Neff H (eds) (2005) Laser ablation-ICP-MS in archaeological research. University of New Mexico Press, AlbuquerqueGoogle Scholar
  112. Speakman et al (2011a)Google Scholar
  113. Speakman RJ, Little NC, Creel D, Miller MR, Iñañez JG (2011b) Sourcing ceramics with portable XRF spectrometers? A comparison with INAA using Mimbres pottery from the American Southwest. J Archaeol Sci 38:3483–3496CrossRefGoogle Scholar
  114. Stos-Gale ZA (1995) Isotope archaeology-a review. In: Beavis J, Barker K (eds) Science and Site. Bournemouth University. Occasional Paper 1Google Scholar
  115. Takahashi H, McSwiggen P, Nielsen C (2014) A unique wave-length dispersive soft x-ray emission spectrometer for electron probe x-ray microanalyzers. Microsc Anal 28(7):S5–S8Google Scholar
  116. Terauchi M, Yamamoto H, Tanaka M (2001) Development of a sub-eV resolution soft x-ray spectrometer for a transmission electron microscope. J Electron Microsc (Tokyo) 50(2):101–1054CrossRefGoogle Scholar
  117. Tite MS (1992) The impact of electron microscopy on ceramic studies. In: Pollard AM (ed) New developments in archaeological science. Oxford University Press, London, pp 111–131Google Scholar
  118. Tite MS, Linington RE (1975) Effects of climate on the magnetic susceptibility of soils. Nature 256:565–566CrossRefGoogle Scholar
  119. Tite M (1999) Pottery production, distribution, and consumption: the contribution of the physical sciences. J Archaeol Method Theory 6(3):181–233CrossRefGoogle Scholar
  120. Tykot RH (1996) Mediterranean islands and multiple flows: the sources and exploitation of Sardinian obsidian. In: Shackley MS (ed) Methods and theory in archaeological obsidian studies. Plenum, New YorkGoogle Scholar
  121. Ure AM (1991) Atomic absorption and flame emissin spectrometry. In: Smith KA (ed) Soil analysis: moderm instrumental techniques, vol 2, 2nd edn. Marcel Dekker, New York, pp 1–62Google Scholar
  122. Van der Merwe NJ (1992) Light stable isotopes and the reconstruction of prehistoric diets. New developments in archaeological science. Oxford University Press, pp 247–264Google Scholar
  123. Vandiver P (2001) The role of materials research in ceramics and archaeology 1. Ann Rev Mater Res 31(1):373–385CrossRefGoogle Scholar
  124. Verhoogen J (1969) Magnetic properties of rocks. Geophys Monogr 13:627–633Google Scholar
  125. Wagner GA (1998) Age determination of young rocks and artifacts. Springer, BerlinCrossRefGoogle Scholar
  126. Walderhaug O, Rykkje J (2000) Some examples of the affect of crystallographic orientation on cathodluminescence colors of quartz. J Sediment Res 70:545–548CrossRefGoogle Scholar
  127. Wall H, Polyakova E, Jacobberger R, Arnold M (2014) Uncovering the characteristics of the chemical vapor deposition of grapheme with rapid Raman imaging. Microsc Anal 28(96):18–20Google Scholar
  128. Weiner S, Goldberg P, Bar-Yosef O (1993) Bone preservation in Kebara Cave, Israel using on-site Fourier transform infrared spectroscopy. J Archaeol Sci 20(6):613–627CrossRefGoogle Scholar
  129. Wenner D, van der Merwe N (1987) Mining for the lowest grade ore: traditional iron production in northern Malawi. Geoarchaeology 2(3):199–216CrossRefGoogle Scholar
  130. Whittig LD, Allardice WR (1986) X-ray diffraction techniques. In: Klute A (ed) Methods of soil analysis, part I, 2nd edn. American Society of Agronomy, Madison, pp 331–362Google Scholar
  131. Williams-Thorpe O, Potts PJ, Webb PC (1999) Field-portable non-destructive analysis of lithic archaeological samples by x-ray fluorescence instrumentation using a mercury iodide detector: comparison with wavelength-dispersive XRF and a case study in British stone axe provenancing. J Archaeol Sci 26(2):215–237CrossRefGoogle Scholar
  132. Wisseman SU, Emerson TE, Hughes RE, Farnsworth KB (2012) Refining the identification of native American pipestone quarries in the midcontinental United States. J Archaeol Sci 39:2496–2505CrossRefGoogle Scholar
  133. Yacobi BG (1994) In: Yacobi BG, Holt DB, Kazmerski LL (eds) Cathodluminescence in microanalysis of solids. Plenum, New YorkCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of GeologyUniversity of GeorgiaAthensUSA

Personalised recommendations