Petrography for Archaeological Geology

Part of the Natural Science in Archaeology book series (ARCHAEOLOGY)


In the first edition of this textbook, it was asserted that the most common artifactual material of prehistory is lithological—rocks and/or minerals. This is still the case. Stone is, and was, the most durable of all materials available to early humans and, in most environmental settings, the most readily available. Its durability made it desirable for a multitude of tasks as well as helping insure its survival in archaeological sites. For the archaeologist, the survival of ancient human stone tools and artifacts has been both a blessing and a source of unintentional biases in terms of the reconstruction of past cultural behavior. Even with the earliest of human culture surely, there were other implements other than those of stone, but by their durability, the latter have survived, while other materials have long ago perished from the archaeological record.


Thin Section Sedimentary Rock Metamorphic Rock Igneous Rock Dolomitic Limestone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abbe MB (2011) A roman marble replica of the “South Slope Head”: polychromy and identification. Source Notes Hist Art 30:18–24CrossRefGoogle Scholar
  2. Adams AE, MacKensie WS, Guilford C (1997) Atlas of sedimentary rocks under the microscope. Addison Wesley Longman, HarlowGoogle Scholar
  3. Adams AE, MacKenzie WS, Guilford C (1984) Atlas of sedimentary rocks under the microscope. Longman/WileyGoogle Scholar
  4. Anderson TJ (2003) Des artisans à la campagne: carrière de meules, forge et voie gallo-romaines à Châbles (FR), vol 19. Saint-PaulGoogle Scholar
  5. Anderson T, Villet D, Serneels V (1999) La fabrication des meules en grès coquillier surle site gallo-romain de Châbles-Les Saux (FR). Archéologie Suisse 22(4):182–189Google Scholar
  6. Andrews HE, Besancon JR, Bolze CE, Dolan M, Kempter K, Reed RM, Riley CM, Thompson MD (1997a) Igneous rocks and volcanic hazards. In: Busch RM (ed) Laboratory manual in physical geology. Prentice Hall, Upper Saddle, pp 50–68Google Scholar
  7. Andrews HE, Besancon JR, Gore PJW, Thompson MD (1997b) Sedimentary rocks, processes and environments. In: Busch RM (ed) Laboratory manual in physical geology. Prentice Hall, Upper Saddle River, pp 69–92Google Scholar
  8. Arakawa F, Miskell-Gerhardt K (2009) Geoarchaeological investigation of the lithic resources in the central Mesa Verde region, Colorado, U.S.A. Geoarchaeloogy 24(2):204–223CrossRefGoogle Scholar
  9. Bevins RE, Pearce NJ, Ixer RA (2011) Stonehenge rhyolitic bluestone sources and the application of zircon chemistry as a new tool for provenancing rhyolitic lithics. J Archaeol Sci 38(3):605–622CrossRefGoogle Scholar
  10. Blatt H (1982) Sedimentary petrology. W. H Freeman, San FranciscoGoogle Scholar
  11. Bosinski G (1992) Eiszeitjäger im Neuwieder Becken. Archäologie an Mittelrhein und Mosel, Band 1. Gesellschaft für Archäologie Am Mittelrhein und Mosel E.V. Archäologische Denkmalpflege Amt, KoblenzGoogle Scholar
  12. Bray ISJ (1994) Geochemical methods for provenance studies of steatite. Scottish Universities Research and Reactor Centre, University of GlasgowGoogle Scholar
  13. Briard J (1979) The Bronze Age in Barbarian Europe: from the Megaliths to the Celts. Routledge & Kegan Paul Books, London/BostonGoogle Scholar
  14. Brook GA, Coward JB, Marais E (1996) Wet and dry periods in the southern African summer rainfall zone during the last 300kyr from speleothem, tufa and sand dune age data. In: Heine K (ed) Paleoecology of Africa and the surrounding islands, vol 24. Balkema, Rotterdam, pp 147–158Google Scholar
  15. Brown KS, Marean CW, Herries AJR, Jacobs Z, Tribolo C, Braun D, Roberts DL, Meyer MC, Bernatchez J (2009) Fires as an engineering tool of early humans. Science 325:859–862CrossRefGoogle Scholar
  16. Bruno M, Lazzarini L (1995) Discovery of the sienese provenance of brecci dorata and breccia giallo fibrosa, and the origin of breccia rossa appennica. Archeomateriaux: Mabres et autres roches. Acts de la Ive Conference internationale, ASMOSIA IV. CRPAA. Pub. Press Univeritaires BordeauxGoogle Scholar
  17. Buol SW, Hole FD (1961) Clay skin genesis in Wisconsin soils. Soil Sci Soc Am J 25(5):377–379CrossRefGoogle Scholar
  18. Caton-Thompson G, Gardner EW (1934) The desert Fayum, vol 1. Royal Anthropological Institute of Great Britain and Ireland, LondonGoogle Scholar
  19. Castella D (1998) Aux Portes d’Aventicum: Dix ans d’archéologie autoroute á Avenches. Documents du Musèe d’Avenches, 4Google Scholar
  20. Champion T, Gamble C, Shennan S, Whittle A (1984) Prehistoric Europe. Academic, LondonGoogle Scholar
  21. Cherry J (1988) Island origins. In: Cunliffe B (ed) Origins. The Dorsey Press, ChicagoGoogle Scholar
  22. Clottes J (2001) La Grotte Chauvet – L’Art des Origines. Editions de Sevil, ParisGoogle Scholar
  23. Clottes J, Courtin J (1996) The cave beneath the sea: paleolithic images at cosquer. H. N. Abrams, New YorkGoogle Scholar
  24. Conroy GC, Pontzer H (2012) Reconstructing human origins: a modern synthesis, 3rd edn. Norton, New YorkGoogle Scholar
  25. Cunliffe B (1988) Aegean civilization and barbarian Europe. In: Cunliffe B (ed) Origins. The Dorsey Press, ChicagoGoogle Scholar
  26. de Boris L, Melentis J (1991) Age et position phyletique du Crane de Petralona (Greece). Les Premiers Europeans. Editions du C.T.H.S, ParisGoogle Scholar
  27. Desor M (1873) Sur les haches en néphrite et en jadeite. In: Muquardt C (ed) Congrés International d’ Anthropologie et d’ Archéologie Préhistoriques , 6e session, Bruxelles, 1872, pp 351–359Google Scholar
  28. Emery D (1996) Carbonate systems. In: Sequence stratigraphy. pp 211–237Google Scholar
  29. Emery D, Myers K (eds) (2009) Sequence stratigraphy. WileyGoogle Scholar
  30. Flenniken JJ, Garrison EG (1975) Thermally altered novaculite and stone tool manufacturing techniques. J Field Archaeol 2:125–131Google Scholar
  31. Flygel E (1982) Microfacies analysis of limestones. Springer, BerlinCrossRefGoogle Scholar
  32. Folk RL (1948) The distinction between grain size and mineral composition in sedimentary-rock nomenclature. J Geol 62(4):344–359CrossRefGoogle Scholar
  33. Folk RL (1980) Petrology of sedimentary rocks. Hemphill Publishing Company Forenbaher, Stašo. 1993. The late copper age architecture at Vučedol, Croatia. J Field Archaeol 21(3):307–323Google Scholar
  34. Ford WE (1918) The growth of mineralogy from 1818–1918. Am J Sci 46:240–254CrossRefGoogle Scholar
  35. Fry WH (1933) Petrographic methods for soil laboratories. US Department of Agriculture, Washington, DCGoogle Scholar
  36. Garrels RM, Mackensie FT (1971) Evolution of sedimentary rocks. W. W. Norton, New YorkGoogle Scholar
  37. Goren Y (2014) The operation of a portable petrographic thin-section laboratory for field studies. New York Microscopical Society NewsletterGoogle Scholar
  38. Hannibal JT, Evans KR (2010) Civil War and cultural geology of southwestern Missouri, part 1: the geology of Wilson’s creek battlefield and the history of stone quarrying and stone use. Field Guides 17:39–68, The Geological Society of America. Boulder, COGoogle Scholar
  39. Hendy CH (1971) The isotopic geochemistry of spelothems, 1. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as paleolimatic indicators. Geochim Cosmochim Acta 35:801–824CrossRefGoogle Scholar
  40. Hermes OD, Luedtke BE, Ritchie D (2001) Melrose green rhyolite: its geologic setting and petrographic and geo-chemical characteristics. J Archaeol Sci 28:913–928CrossRefGoogle Scholar
  41. Higgins MD, Higgins R (1996) A geological companion to Greece and the Aegean. Cornell University Press, IthacaGoogle Scholar
  42. Holmes A (1930) Petrographic methods and calculations. Van Nostrand, New YorkGoogle Scholar
  43. Holmes WH (1894) Natural history of flaked stone implements. Schulte Publishing Company, ChicagoGoogle Scholar
  44. Hsu KJ (1994) The geology of Switzerland: an introduction to tectonic facies. Princeton University Press, PrincetonGoogle Scholar
  45. Ixer RA, Bevins R (2010) The petrography affinity and provenance of lithics from the Cursus field, Stonehenge. Wiltshire Archaeol Nat Hist Mag 103:1–15Google Scholar
  46. Johanssen A (1938) A descriptive petrography of the igneous rocks. University of Chicago Press, ChicagoGoogle Scholar
  47. Jones DL (1977) Reference incompleteGoogle Scholar
  48. Leudtke BE (1992) An archaeologist’s guide to chert and flint. University of California Press, Los AngelesGoogle Scholar
  49. López-Buendía AM, Romero-Sánchez MD, Rodes JM, Cuevas JM, Guillem C (2010) Energy efficiency contribution of the natural stone approach in processing and application. Global Stone Congress¸ 2010. Alicante, SpainGoogle Scholar
  50. Lincoln FC, Rietz HL (1913) The determination of the relative volumes of the components of rocks by mensuration methods. Econ Geol 8(2):120–139CrossRefGoogle Scholar
  51. Lucas A, Harris JR (1962) Ancient Egyptian materials and industries. Edward Arnold Publishers Ltd, LondonGoogle Scholar
  52. Mackensie WS, Donaldson CH, Guilford C (1982) Atlas of igneous rocks and their textures. Addison Wesley Longman Ltd, HarlowGoogle Scholar
  53. MacKenzie WS, Donaldson CH, Guilford C (1982) Atlas of igneous rocks and their textures. Pearson, EssexGoogle Scholar
  54. MacKenzie WS, Adams AE (1994) The color atlas of rocks and minerals in thin section. Wiley, New YorkGoogle Scholar
  55. Mannoni L, Mannoni T (1984) Marble. Facts on File Publications, New YorkGoogle Scholar
  56. Mazeran R (1995) Les bréches exploitées comme marbre dans le Sud-Est de ler France a l’époque romaine. Archéometeriaux: Marbres et autres roches. Acts de la Ive Conference internationale, ASMOSIA IV. CRPAA. Pub. Presses Universitaires de BordeauxGoogle Scholar
  57. Melas EM (1985) The islands of Karpathos, Saros and Kasos in the neolithic and bronze age. Stud Mediterr Archaeol LXVII:15–24Google Scholar
  58. Monttana A, Grespi R, Liborio G (1977) Simon and Schuster’s guide to rocks and minerals. Simon and Schuster, New YorkGoogle Scholar
  59. Odell GH (1975) Microwear in perspective: a sympathetic response to Lawrence A. Keeley. World Archaeol 7:226–240CrossRefGoogle Scholar
  60. Odell GH (2001) Stone tool research at the end of the millennium: classification, function, and behavior. J Archaeol Res 9(1):45–100CrossRefGoogle Scholar
  61. Parker SP (ed) (1994) McGraw-Hill dictionary of geology and mineralogy. McGraw-Hill, New YorkGoogle Scholar
  62. Perkins D (2011) Mineralogy. PearsonGoogle Scholar
  63. Petrequin P, Errera M, Cassen S, Billand G, Colas C, Maréchal D, Prodéo F (2005) Des Alpes italiennes à l’Atlantique au Ve millénaire. Les quatre grandes haches polies de Vendeuil et Maizy (Aisne), Brenouille (Oise). Rev Archéol Picardie Numéro Spéc 22(1):75–104CrossRefGoogle Scholar
  64. Pettijohn FJ, Potter PE, Siever R (1973) Sand and sandstone. Springer, BerlinCrossRefGoogle Scholar
  65. Philpotts AR (1989) Petrography of igneous and metamorphic rocks. Prentice Hall, Englewood CliffsGoogle Scholar
  66. Poldervaart A, Hess HH (1951) Pyroxenes in the crystallization of basaltic magma. J Geol 59(5):472–489CrossRefGoogle Scholar
  67. Ramseyer D (1992) Cites lacustres. Editon Du Cedarc, TreignesGoogle Scholar
  68. Rapp GR (2002) Archaeomineralogy (natural science in archaeology series). Springer, Berlin/NewYorkGoogle Scholar
  69. Rovey CW II, Forir M, Balco G, Gaunt D (2010) Geomorphology and paleontology of Riverbluff Cave, Springfield, Missouri. In: Evans KR, Albers JS (eds) From precambrian rift volcanoes in the Mississippi shelf margin: geological field excursions in the Ozark mountains geological society of america field guide, vol 17. pp 31–38Google Scholar
  70. Schmidt P, Prraz G, Slodczyk A, Bellot-gurlet L, Archer W, Miller CE (2012) Heat treatment in the Middle Stone Age (MSA): temperature induced transformations of silcrete and their technological implications. J Archaeol Sci 39(1):135–144CrossRefGoogle Scholar
  71. Schwartz HP, Liritzis Y, Dixon A (1980) Absolute dating of travertines from the Petralona Cave, Khalkidiki Penisula, Greece. Anthropos 7:152–173Google Scholar
  72. Semenov SA (1964) Prehistoric technology. Cory. Adams and Mackay, LondonGoogle Scholar
  73. Shopov YY, Ford DC, Schwarz HP (1994) Luminescent microbanding in speleothems: high resolution chronology and paleoclimate. Geology 22:407–410CrossRefGoogle Scholar
  74. Smith MP (1964) Georgia petroglyphs. Archaeology 17(1):54–56Google Scholar
  75. Stone JFS (1948) The Stonehenge cursus and its affinities. Archaeol J 104:7–19Google Scholar
  76. Streckeisen A (1979) Classification and nomenclature of volcanic rocks, lampropyres, carbonatites, melititic rocks: recommendations and suggestions of the IUGS subcommision or the systematics of igneous rocks. Geology 7:331–335CrossRefGoogle Scholar
  77. Thomson CW (1877) The voyage of the ‘Challenger’. The Atlantic. A preliminary account of the general results of the exploring voyage of H.M.S. Challenger during the year 1873 and the early part of the year 1876. Volume 2. MacMillan and Co. Digital Edition published in 2014. Cambridge University PressGoogle Scholar
  78. Tringham R, Cooper G, Odell G, Voytek B, Whitman A (1974) Experimentation in the formation of edge damage: a new approach to lithic analysis. J Field Archaeol 1(1–2):171–196Google Scholar
  79. Wells EW III, Sherwood SC, Hollenbach KD (2015) Soapstone vessel chronology and function in the soutehr Appalachians of eastern Tennessee: the Apple Barn site (40BT90) assemblage. Southeast Archaeol 33:153–167CrossRefGoogle Scholar
  80. Williams H, Turner FJ, Gilbert CM (1955) Petrography. W.H. Freeman, San FranciscoGoogle Scholar
  81. Winiger J (1981) Spielzug und Seeufersiedlungen. Helv Archeol 45(48):209–217Google Scholar
  82. Winkler EM (1994) Stone in architecture. Springer, BerlinGoogle Scholar
  83. Yardley BWD (1989) An introduction to metamorphic petrology. Longman Scientific & Technical, EssexGoogle Scholar
  84. Yardley BWD, Mackensie WS, Guilford C (1990) Atlas of metamorphic rocks and their textures. Longman, HarlowGoogle Scholar
  85. Zahid KM, Barbeau DL Jr (2011) Constructing sandstone provenance and classification ternary diagrams using an electronic spreadsheet. J Sediment Res 81(9):702–707CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of GeologyUniversity of GeorgiaAthensUSA

Personalised recommendations