Techniques for Archaeological Sediments and Soils

Part of the Natural Science in Archaeology book series (ARCHAEOLOGY)


Undisturbed Versus Disturbed Sampling—Profile Samples, Soil Monoliths, and Solid Cores: Undisturbed sampling of an archaeological sediment can be as straightforward as the description of an exposed profile in the field. It can also mean the recovery of a representative fraction of those sediments for studies to be performed in a laboratory rather than in a field setting. Disturbed samples are those taken from individual horizons or strata in which structure and morphology information is sacrificed. The sense of the term “sample” used in this discussion is not one commonly associated with statistical evaluations but simply the acquisition of a portion of the sediment or soil for analytical purposes. Sampling (statistical) procedures can, in many cases, be used to assure the representativeness of the field or laboratory fraction of the sediment or soil being examined. This issue will be addressed in the following section. In this section, we shall examine a variety of techniques commonly used to acquire data on archaeologically interesting sediments.


Total Phosphorus Core Sample Optically Stimulate Luminescence Profile Face Soil Monolith 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Andersen ST (1986) Paleoecological studies in terrestrial soils. In: Berglund BE (ed) Handbook of holocene paleoecology and paleohydrology. Wiley, New YorkGoogle Scholar
  2. Angelucci DE (2010) The recognition and description of lithic artifacts in thin section. Geoarchaeology 25(2):220–232CrossRefGoogle Scholar
  3. Arrhenius O (1931) Die Bodenanalyse im dienst der Archäologie. Zeitschrift für Pflanzenernährung, Düngung, Bodenkunde 10(27‐29):427–439CrossRefGoogle Scholar
  4. Arnold B, Money C (1978) Les amas des galets un village littoral d’Auvernier-Nord (Bronze final; lac de Neuchâtel): études géologique et archéologique. Bull Sociétié neuchâteloise Sci Nat 101:153–166Google Scholar
  5. Baker CM (1978) The size effect: an explanation of variability in surface artifact assemblage. Am Antiq 43(2):288–293CrossRefGoogle Scholar
  6. Ball T, Gardner JS, Brotherton JD (1996) Identifying phytoliths produced by the inflorescence bracts of three species of wheat (Tritcum monococcum L., T. dicoccon and T. aestivum L.) using computer-assisted image and statistical analysis. J Archaeol Sci 23(4):619–632CrossRefGoogle Scholar
  7. Barba L (2007) Chemical residues in lime-plaster archaeological floors. Geoarchaeology 22(4):439–452CrossRefGoogle Scholar
  8. Barba L, Lazos L (2000) Chemical analysis of floors for the identification of activity areas: a review. Antropología y Técnica 6:59–70Google Scholar
  9. Bergadà MM (1998) Estudio geoarqueológico de los asentamientos prehistóricos del Pleistoceno Superior y el Holoceno inicial en Catalunya. BAR International Series 742, OxfordGoogle Scholar
  10. Blackwell B, Schwarz H (1993) Archaeochronology and scale. In: Stein JK, Linse AR (eds) Effects of scale on archaeological and geoscientific perspectives, vol 283, Geological Society of America, Special Paper. Geological Society of America, Boulder, Godfrey-Smith DI, Blanchar RW, Rehm G, andCrossRefGoogle Scholar
  11. Blair TC, McPherson JG (1999) Grain-size and textural classification of coarse sedimentary particles. J Sediment Res 69:6–19CrossRefGoogle Scholar
  12. Bordes F (1972) A tale of two caves. Harper and Row, LondonGoogle Scholar
  13. Bozart S (1993) Maize (Zea Mays) cob phytoliths from a central Kansas Great Bend Aspect archaeological site. Plains Anthropol 38:279–286Google Scholar
  14. Bozarth SR (1986) Morphologically distinctive Phaseolus, Cucurbita and Helianthus annuus phytoliths. Plant opal phytolith analysis in archaeology and paleoecology. In: Rovner I (ed) Occasional papers of the Phytolitharian. North Carolina State University, Raleigh, pp 56–66Google Scholar
  15. Brown DA (1984) Prospects and limits of a phytolith key for grasses in the central United States. J Archaeol Sci 11(4):345–368CrossRefGoogle Scholar
  16. Bryant VM Jr (1974) The role of coprolyte analysis in archaeology. Bull Tex Archaeol Soc 45:1–28Google Scholar
  17. Bryant VM Jr (1978) Palynology: a useful method for determining paleoenvironmental. Tex J Sci 30:25–42Google Scholar
  18. Bryant VM Jr (1989) Pollen: nature’s fingerprints of plants. In: 1990 yearbook of science and the future. Encyclopedia Britannica, ChicagoGoogle Scholar
  19. Bryant VM Jr, Holloway RG (1983) The role of palynology in archaeology. In: Schiffer MB (ed) Advances in archaeological method and theory. Academic, New York, pp 191–223Google Scholar
  20. Buckley DE, Mackinnon WG, Cranston RE, Christian HA (1994) Marine. Geology 117(1–4):95–106Google Scholar
  21. Bukry D (1979) Comments on opal phytoliths and stratigraphy of Neogene silica-flagellates and cocoliths at Deep Sea Drilling Project Site 397 off northwest Africa. In: Shamback JD (ed) Initial reports of the deep sea drilling project, vol 49. U.S. Government Printing Office, Washington, DC, pp 977–1009Google Scholar
  22. Butzer KW (1982) Archaeology as human ecology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  23. Carter DL, Berg RD, Sanders BJ (1985) The effect of furrow irrigation erosion on crop productivity. Soil Sci Soc Am J 49(1):207–211CrossRefGoogle Scholar
  24. Carver RE (ed) (1971) Procedures in sedimentary geology. Wiley-Interscience, New YorkGoogle Scholar
  25. Catt JA, Weir AH (1976) The study of archaeologically important sediments by petrographic techniques. In: Davidson DA, Shackley MC (eds) Geoarchaeology. Westview Press, BoulderGoogle Scholar
  26. Cavanagh WG, Hirst S, Litton CD (1988) Soil phosphate, site boundaries and change point analysis. J Field Archaeol 15:67–83Google Scholar
  27. Courty M-A (1992) Soil micromorphology in archaeology. Proc Br Acad 77:39–59, Oxford University Press. LondonGoogle Scholar
  28. Courty M-A, Goldberg PA, Macphail RI (1989) Soil and micromorphology in archaeology. Cambridge University Press, CambridgeGoogle Scholar
  29. Craddock P, Gurney D, Pryor F, Hughes M (1985) The application of phosphate analysis to the location and interpretation of archaeological sites. Archaeol J 142:361–376CrossRefGoogle Scholar
  30. Davis M (1969) Palynology and environmental history during the quarternary period. Am Sci 57(3):317–322Google Scholar
  31. Day PR (1965) Particle fractionation and particle size analysis. In: Black CA et al (eds) Methods of soils analysis, part I. Agronomy 9:545–567Google Scholar
  32. Edgington DN, Robbins JA (1991) Standard operating procedure for collection of sediment samples. Great Lakes Water Institute. University of Wisconsin, MilwaukeeGoogle Scholar
  33. Ehrenberg CG (1854) Mikrogeologie. Leopold Voss, LeipzigGoogle Scholar
  34. Eidt RC (1973) A rapid chemical test for archaeological site surveying. Am Antiq 38:206–210CrossRefGoogle Scholar
  35. Eidt RC (1977) Detection and examination of anthrosols by phosphate analysis. Science 197:1327–1333CrossRefGoogle Scholar
  36. Eidt RC (1985) Theoretical and practical considerations in the analysis of anthrosols. In: Rapp G Jr, Gifford JA (eds) Archaeological geology. Yale University Press, New Haven, pp 155–190Google Scholar
  37. Eidt RC, Woods WI (1974) Abandoned settlement analysis: theory and practice. Field Test Associates, ShorewoodGoogle Scholar
  38. Eighmy JL, Sternberg RS (eds) (1990) Archaeomagnetic dating. University of Arizona Press, TucsonGoogle Scholar
  39. Faegri K, Iverson J (1975) Textbook of pollen analysis, 3rd edn. Hafner Publishing, New YorkGoogle Scholar
  40. Farrand WR (1975) The analysis of quaternary cave sediments. World Archaeol 10:290–301Google Scholar
  41. Fladmark KR (1982) Microdebitage analysis: initial considerations. J Archaeol Sci 9(2):205–222CrossRefGoogle Scholar
  42. Folk RL (1968) Petrology of sedimentary rocks. Hemphill, AustinGoogle Scholar
  43. Gagliano SM, Pearson CE, Weinstein RA, Wiseman DE, McClendon CE (1982) Sedimentary studies of prehistoric archaeological sites. Coastal Environments, Baton RougeGoogle Scholar
  44. Gall J-C (1983) Ancient sedimentary environments and the habitats of the living organisms: introduction to paleoecology. Springer, New YorkCrossRefGoogle Scholar
  45. Gall JC (2012) Ancient sedimentary environments and the habitats of living organisms: introduction to palaeoecology. Springer Science & Business MediaGoogle Scholar
  46. Garrison EG (1998) Radar prospection and cryoprobes – early results from Georgia. Archaeol Prospect 5:57–65CrossRefGoogle Scholar
  47. Garrison EG, Weaver W, Littman SL, Cook Hale J, Srivastava P (2012a) Late quaternary paleoecology and Heinrich events at Gray’s reef national marine sanctuary, South Atlantic Bight, Georgia. Southeast Geol 48(4):165–184Google Scholar
  48. Garrison EG, Cook Hale J, Holland JL, Kelley AR, Kelley JT, Lowery D, Merwin DE, Robinson DS, Schaefer CA, Thomas BW, Thomas LA, Watts GP (2012b) Prehistoric site potential and historic shipwrecks on the Atlantic outer continental shelf. OCS study, BOEM 2012-008. U.S. Department of the Interior, Bureau of Ocean Energy Management, Regulation and Enforcement, Atlantic OCS RegionGoogle Scholar
  49. Gee GW, Bauder JW (1986) In: Klute A (ed) Methods of soil analysis, part I. Physical and mineralogical methods, 2nd edn. Soil Science Society of America, MadisonGoogle Scholar
  50. Godfrey-Smith DI, Huntley DJ, Chen WH (1988) Optical dating of quartz and feldspar sediment extracts. Quart Sci Rev 7:373–380CrossRefGoogle Scholar
  51. Goldberg PA (1995) Microstratigraphy, micromorphology site formation processes, soils. In: The practical impact of science on field archaeology: maintaining long-term analytical options. a workshop on cyprus, 22–23 July 1995. The Weiner Laboratory of the American School of Classical Studies, AthensGoogle Scholar
  52. Goldberg P (1999) Late-terminal classic Maya pottery in northern Belize: a petrographic analysis of sherd samples from Colha and Kichpanha. Iceland, HB. J Archaeol Sci 26(8):951–966CrossRefGoogle Scholar
  53. Grebothé D, Lassau G, Ruckstuhl, Seifert M (1990) Thayngen SH-Weier: Trockeneissondierung 1989. Jahrb Schweizerischen Ges Ur-und Frühgeschichte 73:167–175Google Scholar
  54. Green AJ (1981) Particle-size analysis. In: McKeague JA (ed) Manual on soil sampling and methods of analysis. Canadian Society of Soil Science, Ottawa, pp 4–29Google Scholar
  55. Grob A (1896) Beitrage zur Anatomie der Epidermis der Gramineenblatter. Biblioteca Bot 36:1–63Google Scholar
  56. Hach water analysis handbook, 2nd edn (1992) Hach Co., LovelandGoogle Scholar
  57. Hadorn Ph (1994) Saint-Blaise/Bains des Dames, 1. Palynologie d’ un site néolithique et historic de la végtation der derniers 16,000 ans. Neuchȃtel, Museé cantonal d’archéologie. Archeologie Neuchateloise, 18Google Scholar
  58. Hochuli S (1994) Unter den ABahn 2000; Gefrierkern Bohrung in Kanton Zug. Archaölogie der Schweiz 17(1):25–30Google Scholar
  59. Hodgson JM (1978) Soil sampling and soil description. Oxford University Press, LondonGoogle Scholar
  60. Indurante SJ, Follmer LR, Hammer RD, Koenig PG (1990) Particle-size analysis by a modified pipette procedure. Soil Sci Soc Am J 54:560–563CrossRefGoogle Scholar
  61. Ismail‐Meyer K, Rentzel P, Wiemann P (2013) Neolithic lakeshore settlements in Switzerland: new insights on site formation processes from micromorphology. Geoarchaeology 28(4):317–339CrossRefGoogle Scholar
  62. Jelinek A, Farrand WR, Haas G, Horowitz A, Goldberg PA (1973) New excavations at Tabun Cave, Mount Carmel, Israel: preliminary report. Paléorient I:151–183Google Scholar
  63. Jones RL (1964) Note on occurrence of opal phytoliths in some Cenozoic sedimentary rocks. J Paleontol 38:773–775Google Scholar
  64. Khakimov Akh R (1957) Artificial freezing of soils. Theory and practice. Academy of Sciences of the U.S.S.R. Permafrost Institute in V.A. Obruche. Translation by Israel Program in Scientific Translations (1966)Google Scholar
  65. Kooistraa MJ, Kooistra LI (2003) Integrated research in archaeology using soil micromorphology and palynology. Catena 54:603–617CrossRefGoogle Scholar
  66. Krumbein WC, Pettijohn FJ (1938) Manual of sedimentary petrography. Appleton and Century, New YorkGoogle Scholar
  67. Kubiena WL (1938) Micropedology. Collegiate Press Inc., AmesGoogle Scholar
  68. Kubiena ML (1953) The soils of Europe. Murby, LondonGoogle Scholar
  69. Lassau G, Riethmann P (1988) Trockeneissondierung, ein Prospektionsverfahren im Seeuferbereich. Jahrb Schweizerischen Ges Ur -und Frühgeschichte 71:241–247Google Scholar
  70. Lotter AF, Renberg I, Hansson H, Stockli R, Sturm M (1997) A remote controlled freeze corer for sampling unconsolidated surface sediments. Aquat Sci 59(4):295–303CrossRefGoogle Scholar
  71. Maher LJ (1981) Statistics for microfossil concentration measurements employing samples spiked with marker grains. Rev Paleobotany Palynol 32:153–191CrossRefGoogle Scholar
  72. Manzanilla LR (2007) Las ‘casas’ nobles de los barrios de Teotihuacan: estructuras exclusionistas en un entorno corporativo. Memoria del El Colegio Nacional, pp 453–470Google Scholar
  73. Martin PD (1970) The last 10,000 years. University of Arizona Press, TucsonGoogle Scholar
  74. Mikhail EH, Briner GP (1978) Routine particle size analysis using sodium hypochrlorite and ultra-sonic dispersion. Aust J Soc Res 14:241–244CrossRefGoogle Scholar
  75. Miskimmin BM, Curtis PJ, Schindler DW, Lafaut N (1996) A new hammer-driven freeze corer. J Paleolimnol 15(3):265–269CrossRefGoogle Scholar
  76. Mulholland SC, Rapp G Jr (eds) (1992) Phytolith systematics: emerging issues. Plenum Press, New York, pp 1–13CrossRefGoogle Scholar
  77. Murphy J, Riley JP (1962) A modified single solution for the determination of phosphorus in natural waters. Anal Chim Acta 27:21–26CrossRefGoogle Scholar
  78. Orliac M (1975) Empreintes au latex des coupes du gisement magdalènien de Pincevent: technique et premier rèsultats. Bull Soc Prehist Fr 72:274–276CrossRefGoogle Scholar
  79. Owens DL (1997) A feasibility study for phytolith research in the southeast from scull shoals in the Oconee National Forest and Skidaway Island, Georgia. Masters thesis. Department of Geology. University of Georgia, AthensGoogle Scholar
  80. Pansu M, Gautheyrou J, Loyer J-Y (2001) Soil analysis: sampling, instrumentation and quality control. (trans: Sarma VAK, Balkema AA). LisseGoogle Scholar
  81. Pearsall DM (1989) Phytolith analysis. Paleoethnobotany: a handbook of procedures. Academic, London, pp 311–438CrossRefGoogle Scholar
  82. Pearsall DM, Trimball M (1984) Identifying past agricultural activity through soil phytolith analysis: a case study from the Hawaiian islands. J Archaeol Sci 11:119–133CrossRefGoogle Scholar
  83. Pearson CE, Weinstein RA, Wiseman DE, McClendon CM (1982) Sedimentary studies of prehistoric archaeological sites: criteria for the identification of submerged archaeological sites of the northern Gulf of Mexico continental shelf. Coastal Environments, Inc., Baton Rouge, 118 pGoogle Scholar
  84. Piperno D (1988) Phytolith analysis: an archaeological and geological perspective. Academic, San Diego, pp 47–49Google Scholar
  85. Powers AH (1992) Great expectations: a short historical review of European phytolith sytematics. In: Mulholland SC, Rapp G Jr (eds) Phytolith sytematics: emerging issues. Plenum Press, New York, pp 15–35CrossRefGoogle Scholar
  86. Rich FJ (1999) A report on the palynological characteristics of the brown coal samples from the Ennis Mine. Southeastern Section, Geological Society of America Field Guide. pp 24–25Google Scholar
  87. Rockwell TK (2000) Use of soil geomorphology in fault studies. In: Quaternary geoochronology: methods and applications. American Geophysical Union, Washington, DCGoogle Scholar
  88. Rovner I (1983) Major advances in archaeobotany: archaeological uses of phytolith analysis. In: Schiffer MB (ed) Advances in archaeological method and theory, vol 6. Academic, New YorkGoogle Scholar
  89. Rovner I (1988) Macro-and micro-ecological reconstruction using plant opal phytolith data from archaeological sediments. Geoarchaeology 3:155–163CrossRefGoogle Scholar
  90. Rovner I (1996a) Personal communicationGoogle Scholar
  91. Rovner I (1996b) Morphometric facts and typological fallacies in Maize Phytolith Taxonomy. Unpublished manuscriptGoogle Scholar
  92. Russ JC, Rovner I (1989) Stereological identification of opal phytolith populations from wild and cultivated Zea. Am Antiq 54(4):784–792CrossRefGoogle Scholar
  93. Russell DA, Rich FJ, Schneider V, Lynch-Stieglitz J (2009) A warm thermal enclave in the Late Pleistocene of the South-eastern United States. Biol Rev 84:173–202CrossRefGoogle Scholar
  94. Schuldenrein J (1991) Coring and the identity of cultural-resource enviroments: a comment on Stein. Am Antiq 56:131–137CrossRefGoogle Scholar
  95. Schuldenrein J (1995) Geochemistry, phosphate fractionation, and the detection of activity areas at prehistoric North American sites. Pedological perspectives in archaeological research. Soil Science Society of America Special Publication 44Google Scholar
  96. Shackley ML (1975) Archaeological sediments: a survey of analytical methods. Wiley, New YorkGoogle Scholar
  97. Shane LCK (1992) Palynological procedures (draft). University of Minnesota, MinneapolisGoogle Scholar
  98. Shuter E, Teasdale WE (1989) Techniques of water-resources investigations of the United States geological survey, chapter F1: application of drilling, coring, and sampling to test holes and wells. U.S. Geological Survey, Washington, DCGoogle Scholar
  99. Sinclair PJJ (1991) Archaeology in eastern Africa: an overview of current chronological issues. J Afr Prehist 32:179–219CrossRefGoogle Scholar
  100. Sinclair PJJ, Petrén M (nd) Exploring the interface between modern and traditional information systems: the case of Great Zimbabwe. Unpublished ms. Sub Department of African and Comparative Anthropology. Uppsala University, SwedenGoogle Scholar
  101. Sinclair PJJ, Pikirayi I, Pwiti G, Soper R (1993) Urban trajectories on the Zimbabwean plateau. In: Shaw T, Sinclair P, Andah B, Okpoko A (eds) The archaeology of Africa: food, metals and towns. Routledge, London and New York, pp 705–731Google Scholar
  102. Singer MJ, Janitsky P (eds) (1986) Field and laboratory procedures used in a soil chronosequence study. U.S, Geological Survey Bulletin 1648. Geological Survey, Washington, DCGoogle Scholar
  103. Sjöberg A (1976) Phosphate analysis of anthropic soils. J Field Archaeol 3:447–454Google Scholar
  104. Soil and Plant Analysis Council, Inc (2000) Soil analysis: handbook of reference methods. CRC Press, Boca RatonGoogle Scholar
  105. Sofka RE, Carter DL, Brown MJ (1992) Imhoff cone determination of sediment in irrigation runoff. Soil Sci Soc Am J 56(3):884–890CrossRefGoogle Scholar
  106. Soukup DA, Buck BJ, Harris W (2008) Preparing soils for mineralogical analyses. In: Ulery AL, Drees LR (eds) Methods of soil analysis part 5—mineralogical methods, SSSA Book Series 5.5. Soil Science Society of America, MadisonGoogle Scholar
  107. Stein JK (1986) Coring archaeological sites. Am Antiq 51:505–527CrossRefGoogle Scholar
  108. Stein JK (1988) Interpreting sediments in cultural settings. In: Stein JK, Farrand WR (eds) Archaeological sediments in context. Center for the Study of Man, Orono, pp 5–19Google Scholar
  109. Stein JK (1991) Coring in CRM and archaeology: a reminder. Am Antiq 56:131–137CrossRefGoogle Scholar
  110. Stein JK, Farrand WR (eds) (1998) Archaeological sediments in context. Center for the Study of Early Man, OronoGoogle Scholar
  111. Struve GA (1835) De silica in plantis nonnullis. PhD dissertation. University of BerlinGoogle Scholar
  112. Susino GJ (2010) Optical dating and lithic microwaste—archaeological applications. Quat Geochronol 5(2-3):306–310CrossRefGoogle Scholar
  113. Twiss PC, Suess E, Smith RM (1969) Morphological classification of grass phytoliths. Proc Soil Sci Soc Am 33:109–115CrossRefGoogle Scholar
  114. Twiss PC (2001) A curmudgeon’s view of grass phytolithology. In: Meunier JD, Colin F (eds) Phytoliths: applications in earth sciences and human history. A.A. Balkema Pub, LisseGoogle Scholar
  115. Van der Plas L, Tobi AC (1965) A chart for judging the reliability of point counting results. Am J Sci 263:87–90CrossRefGoogle Scholar
  116. Vanderford CF (1897) The soils of Tennessee. Bull Tenn Agric Ext Station 10:31–139Google Scholar
  117. Wagner GA (1998) Age determination of young rocks and artifacts. Springer, BerlinCrossRefGoogle Scholar
  118. Weaver W (2002) Paleoecology and prehistory: fossil pollen at Gray’s Reef National Marine Sanctuary, Georgia. Unpublished Masters Thesis. The University of Georgia, AthensGoogle Scholar
  119. Weber-Tièche I, Sordoillet D (2008) Plateau de Bevaix, 4. Etude géologique en contexte archéologique. NeuchâtelGoogle Scholar
  120. Wood WR, McMillan RB (eds) (1975) Prehistoric man and his environments: a case study in the Ozark highlands. Academic, New YorkGoogle Scholar
  121. Woods WI (1977) The quantitative analysis of soil phosphate. Am Antiq 42:248–252CrossRefGoogle Scholar
  122. Yaalon DH (1976) “Calgon” no longer suitable. Soil Sci Soc Am J 40(2):333–333CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of GeologyUniversity of GeorgiaAthensUSA

Personalised recommendations