Advertisement

Composition and Macrostructure of Biological Soil Crusts

  • Claudia ColesieEmail author
  • Vincent John Martin Noah Linus Felde
  • Burkhard Büdel
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 226)

Abstract

The visible structure (>1 mm) of biocrusts is determined by both biotic and abiotic influences. First, the composing organisms and the various proportions of them have significant influence on the macrostructure of a biocrust. Second, physical parameters, such as climate, and physical and chemical soil properties impact biocrust macrostructure. In this chapter, the difference between abiotic and biotic surface crusting and influences on biocrust structure are discussed. Additionally, we summarize different approaches that were used to classify biocrusts.

Keywords

Soil Crust Biological Soil Crust Mojave Desert Burial Height Sand Burial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Amézketa E (1999) Soil aggregate stability: a review. J Sustain Agric 14:83–151. doi: 10.1300/J064v14n02_08 CrossRefGoogle Scholar
  2. Assouline S (2004) Rainfall-induced soil surface sealing: a critical review of observations, conceptual models, and solutions. Vadose Zone J 3:570–591. doi: 10.2113/3.2.570 Google Scholar
  3. Belnap J (2003) Comparative structure of physical and biological soil crusts. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management, vol 150, 2nd edn, Ecological studies. Springer, Berlin, pp 177–191Google Scholar
  4. Belnap J (2006) The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol Process 20:3159–3178. doi: 10.1002/hyp.6325 CrossRefGoogle Scholar
  5. Belnap J, Gillette DA (1998) Vulnerability of desert biological soil crusts to wind erosion: the influences of crust development, soil texture, and disturbance. J Arid Environ 39:133–142CrossRefGoogle Scholar
  6. Belnap J, Büdel B, Lange OL (2003) Biological soil crusts: characteristics and distribution. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management, vol 150, 2nd edn, Ecological studies. Springer, Berlin, pp 3–33Google Scholar
  7. Belnap J, Phillips SL, Herrick JE, Johansen JR (2007) Wind erodibility of soils at Fort Irwin, California (Mojave Desert), USA, before and after trampling disturbance: implications for land management. Earth Surf Process Landf 32:75–84CrossRefGoogle Scholar
  8. Belnap J, Phillips SL, Witwicki DL, Miller ME (2008) Visually assessing the level of development and soil surface stability of cyanobacterially dominated biological soil crusts. J Arid Environ 72:1257–1264CrossRefGoogle Scholar
  9. Büdel B (2003) Synopsis: comparative biogeography of soil-crust biota. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management, vol 150, 2nd edn, Ecological studies. Springer, Berlin, pp 141–152Google Scholar
  10. Büdel B, Darienko T, Deutschewitz K, Dojani S, Friedl T, Mohr KI, Salisch M, Reisser W, Weber B (2009) Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb Ecol 57:229–247CrossRefPubMedGoogle Scholar
  11. Chen Y, Tarchitzky J, Brouwer J, Morin J, Banin A (1980) Scanning electron microscope observations on soil crusts and their formation. Soil Sci 130:49–55CrossRefGoogle Scholar
  12. Ciani A, Goss KU, Schwarzenbach RP (2005) Light penetration in soil and particulate minerals. Eur J Soil Sci 56: 561–574CrossRefGoogle Scholar
  13. Colesie C, Gommeaux M, Green TGA, Büdel B (2014a) Biological soil crusts in continental Antarctica: Garwood Valley, Southern Victoria Land, and Diamond Hill, Darwin Mountains region. Antarct Sci 26:115–123CrossRefGoogle Scholar
  14. Colesie C, Green TGA, Türk R, Hogg ID, Sancho LG, Büdel B (2014b) Terrestrial biodiversity trends along the Ross Sea coastline, Antarctica: lack of latitudinal gradient, controls and potential limits to bioclimatic modeling. Polar Biol 37:1197–1208CrossRefGoogle Scholar
  15. Coppola A, Basile A, Wang X, Comegna V, Tedeschi A, Mele G, Comegna A (2011) Hydrological behavior of microbiotic crusts on sand dunes: example from NW China comparing infiltration in crusts and crust-removed soil. Soil Tillage Res 117:34–43CrossRefGoogle Scholar
  16. Dietze M, Bartel S, Lindner M, Kleber A (2012) Formation mechanisms and control factors of vesicular soil structure. Catena 99:83–96CrossRefGoogle Scholar
  17. Eldridge DJ (1998) Trampling of microphytic crusts on calcareous soils, and its impact on erosion under rain-impacted flow. Catena 33:221–239. doi: 10.1016/S0341-8162(98)00075-7 CrossRefGoogle Scholar
  18. Eldridge DJ, Rosentreter R (1999) Morphological groups: a framework for monitoring microphytic crusts in arid landscapes. J Arid Environ 41:11–25CrossRefGoogle Scholar
  19. Felde VJMNL, Peth S, Uteau-Puschmann D, Drahorad SL, Felix-Henningsen P (2014) Soil microstructure as an under-explored feature of biological soil crusts hydrological properties: case study from the NW Negev Desert. Biodivers Conserv 23:1687–1708. doi: 10.1007/s10531-014-0693-7 CrossRefGoogle Scholar
  20. Green TGA, Sancho LG, Pintado A, Schroeter B (2011) Functional and spatial pressures on terrestrial vegetation in Antarctica forced by global warming. Polar Biol 34:1643–1656CrossRefGoogle Scholar
  21. Herrick JE, van Zee JW, Belnap J, Johansen JR, Remmenga M (2010) Fine gravel controls hydrologic and erodibility responses to trampling disturbance for coarse-textured soils with weak cyanobacterial crusts. Catena 83:119–126CrossRefGoogle Scholar
  22. Hoppert M, Reimer R, Kemmling A, Schröder A, Günzl B, Heinken T (2004) Structure and reactivity of a biological soil crust from a xeric sandy soil in central Europe. Geomicrobiol J 21:183–191CrossRefGoogle Scholar
  23. Horn R, Peth S (2012) Mechanics of unsaturated soils for agricultural applications. In: Huang PM, Li Y, Sumner ME (eds) Handbook of soil sciences, 2nd edn. CRC, Taylor & Francis Boca Raton, Boca Raton, London, pp 1–30Google Scholar
  24. Khalifa MA, Kumon F, Yoshida K (2009) Calcareous duricrust, Al Qasim Province, Saudi Arabia: occurrence and origin. Quat Int 209:163–174. doi: 10.1016/j.quaint.2009.02.014 CrossRefGoogle Scholar
  25. Kuske CR, Yeager CM, Johnson S, Ticknot OL, Belnap J (2011) Response and resilience of soil biocrust bacterial communities to chronic physical disturbance in arid shrublands. ISME J 6:886–897. doi: 10.1038/ismej.2011.153 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lan S, Wu L, Zhang D, Hu C (2012) Successional stages of biological soil crusts and their microstructure variability in Shapotou region (China). Environ Earth Sci 65:77–88. doi: 10.1007/s12665-011-1066-0 CrossRefGoogle Scholar
  27. Lemos P, Lutz JF (1957) Soil crusting and some factors affecting it. Soil Sci Soc Am J 21:485–493. doi: 10.2136/sssaj1957.03615995002100050007x CrossRefGoogle Scholar
  28. Malam Issa O, Trichet J, Défrarg C, Couté A, Valentin C (1999) Morphology and microstructure of microbiotic soil crusts on a tiger bush sequence (Niger, Sahel). Catena 37:175–196CrossRefGoogle Scholar
  29. Menon M, Yuan Q, Jia X, Dougill AJ, Hoon SR, Thomas AD, Williams RA (2011) Assessment of physical and hydrological properties of biological soil crusts using X-ray microtomography and modelling. J Hydrol 397:47–54CrossRefGoogle Scholar
  30. Orlovsky L, Dourikov M, Babaev A (2004) Temporal dynamics and productivity of biogenic soil crusts in the central Karakum desert, Turkmenistan. J Arid Environ 56:579–601CrossRefGoogle Scholar
  31. Pócs T (2009) Cyanobacterial crust types, as strategies for survival in extreme habitats. Acta Bot Hung 51:147–178. doi: 10.1556/ABot.51.2009.1-2.16 CrossRefGoogle Scholar
  32. Rao B, Liu Y, Lan S, Wu P, Wang W, Li D (2012) Effects of sand burial stress on the early developments of cyanobacterial crusts in the field. Eur J Soil Biol 48:48–55. doi: 10.1016/j.ejsobi.2011.07.009 CrossRefGoogle Scholar
  33. Reed SC, Coe KK, Sparks JP, Housman DC, Zelikova TJ, Belnap J (2012) Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nat Clim Chang 2:752–755CrossRefGoogle Scholar
  34. Valentin C, Bresson LM (1992) Morphology, genesis and classification of surface crusts in loamy and sandy soils. Geoderma 55:225–245CrossRefGoogle Scholar
  35. Walter H (1985) Vegetation of the earth and ecological systems of the geo-biosphere, 3rd edn. Springer, BerlinCrossRefGoogle Scholar
  36. Williams AJ, Buck BJ, Beyene MA (2012) Biological soil crusts in the Mojave Desert, USA: micromorphology and Pedogenesis. Soil Sci Soc Am J 76:1685–1698. doi: 10.2136/sssaj2012.0021 CrossRefGoogle Scholar
  37. Woolnough WG (1927) The duricrust in Australia. J Proc R Soc NSW 61:24–53Google Scholar
  38. Zaady E, Katra I, Yizhaq H, Kinast S, Ashkenazy Y (2014) Inferring the impact of rainfall gradient on biocrusts’ developmental stage and thus on soil physical structures in sand dunes. Aeolian Res 13:81–89CrossRefGoogle Scholar
  39. Zhang YM, Wang HL, Wang XQ, Yang WK, Zhang DY (2006) The microstructure of microbiotic crust and its influence on wind erosion for a sandy soil surface in the Gurbantunggut Desert of Northwestern China. Geoderma 132:441–449. doi: 10.1016/j.geoderma.2005.06.008 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Claudia Colesie
    • 1
    Email author
  • Vincent John Martin Noah Linus Felde
    • 2
  • Burkhard Büdel
    • 1
  1. 1.Plant Ecology and Systematics, Department of BiologyUniversity of KaiserslauternKaiserslauternGermany
  2. 2.Institute of Soil Science and Soil Conservation, Research Centre for Biosystems, Land Use and Nutrition (IFZ)Justus Liebig University GiessenGiessenGermany

Personalised recommendations