Advertisement

Bacteria and Non-lichenized Fungi Within Biological Soil Crusts

  • Stefanie Maier
  • Lucia Muggia
  • Cheryl R. Kuske
  • Martin GrubeEmail author
Part of the Ecological Studies book series (ECOLSTUD, volume 226)

Abstract

Biological soil crusts (biocrusts) are found in a broad range of climatic zones as components of open vegetation. In addition to photosynthetically active and N-fixing Cyanobacteria, heterotrophic bacteria and fungi are integral components of biocrusts. In this chapter, we present an overview of the diversity and interactions of fungi and bacteria. Both can occur “free-living” or in tight associations. Lichen symbioses, which frequently form a dominating aspect of biocrusts, tend to be a particular hotspot of complex bacterial and fungal interactions. Biocrust lichens can be colonized by other fungi or by other lichens, and they represent a particularly rich habitat for bacterial communities as shown by recent research results. Nevertheless, metabolic details and the regulatory principle of fungal and bacterial dynamics remain largely unclear and are in need of refined analysis. According to present data, biocrust bacteria and fungi seem to be widespread, diverse, and capable of withstanding the harsh and fluctuating conditions of biocrust habitats as long as stability of soil is warranted.

Keywords

Bacterial Community Fungal Community Terminal Restriction Fragment Length Polymorphism Soil Crust Biological Soil Crust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abed RM, Al-Sadi AM, AL-Shehi M, Al-Hinai S, Robinson MD (2013) Diversity of free-living and lichenized fungal communities in biological soil crusts of the Sultanate of Oman and their role in improving soil properties. Soil Biol Biochem 57:695–705CrossRefGoogle Scholar
  2. Abed RM, Al Kharusi S, Schramm A, Robinson MD (2010) Bacterial diversity, pigments and nitrogen fixation of biological desert crusts from the Sultanate of Oman. FEMS Microbiol Ecol 72:418–428CrossRefPubMedGoogle Scholar
  3. Amann R, Fuchs BM (2008) Single-cell identification in microbial communities by improved fluorescence in situ hybridization techniques. Nat Rev Microbiol 6:339–348CrossRefPubMedGoogle Scholar
  4. Angel R, Conrad R (2013) Elucidating the microbial resuscitation cascade in biological soil crusts following a simulated rain event. Environ Microbiol 15:2799–2815PubMedGoogle Scholar
  5. Asta J, Orry F, Toutain F, Souchier B, Villemin G (2001) Micromorphological and ultrastructural investigations of the lichen-soil interface. Soil Biol Biochem 33:323–337CrossRefGoogle Scholar
  6. Bates ST, Garcia-Pichel F (2009) A culture independent study of free-living fungi in biological soil crusts of the Colorado Plateau: their diversity and relative contribution to microbial biomass. Environ Microbiol 11:56–67CrossRefPubMedGoogle Scholar
  7. Bates ST, Reddy GSN, Garcia-Pichel F (2006) Exophiala crusticola anam. nov. (affinity Herpotrichiellaceae), a novel black yeast from biological soil crusts in the Western United States. Int J Syst Evol Microbiol 56:269–702CrossRefGoogle Scholar
  8. Bates ST, Garcia-Pichel F, Nash TH III (2010) Fungal components of biological soil crusts: insights from culture dependent and culture independent studies. Bibl Lichenol 105:197–210Google Scholar
  9. Bates ST, Nash TH III, Pichel F (2012) Patterns of diversity for fungal assemblages of biological soil crust from the southwestern United States. Mycologia 104:353–561CrossRefPubMedGoogle Scholar
  10. Belnap J, Lange OL (2003) Biological soil crusts: structure, function, and management. In: Baldwin IT, Caldwell MM, Heldmaier G, Lange OL, Mooney HA, Schulze ED, Sommer U (eds) Ecological studies series, vol 150. Springer, BerlinGoogle Scholar
  11. Bjelland T, Grube M, Hoem S, Jorgensen SL, Daae FL, Thorseth IH, Øvreås L (2010) Microbial metacommunities in the lichen–rock habitat. Environ Microbiol Rep 3:434–443CrossRefPubMedGoogle Scholar
  12. Boyer SL, Johansen JR, Flechtner VR, Howard GL (2002) Phylogeny and genetic variance in terrestrial Microcoleus (Cyanophyceae) species based on sequence analysis of the 16S rRNA gene and associated 16S-23S ITS region. J Phycol 38:1222–1235CrossRefGoogle Scholar
  13. Büdel B, Colesie C, Green ATG, Grube M et al. (2014) Improved appreciation of the functioning and importance of biological soil crusts in Europe: the Soil Crust International Project (SCIN). Biodivers Conserv 23(7):1639–1658, doi. 10.1007/s10531-014-0645-2CrossRefPubMedPubMedCentralGoogle Scholar
  14. Castillo-Monroy AP, Bowker MA, Maestre FT, Rodríguez-Echeverría S et al. (2011) Relationships between biological soil crusts, bacterial diversity and abundance, and ecosystem functioning: insights from a semi-arid Mediterranean environment. J Veg Sci 22:165–174CrossRefGoogle Scholar
  15. Chan Y, Lacap DC, Lau MCY, Ha KY, Warren-Rhodes KA, Cockell CS, Cowan DA, McKay CP, Pointing SB (2012) Hypolithic microbial communities: between a rock and a hard place. Environ Microbiol 14:2272–2282CrossRefPubMedGoogle Scholar
  16. Collins SL, Sinsabaugh RL, Crenshaw C, Green L, Porras-Alfaro A, Stursova M, Zeglin LH (2008) Pulse dynamics and microbial processes in aridland ecosystems. J Ecol 96:413–420CrossRefGoogle Scholar
  17. Csotonyi JT, Swiderski J, Stackebrandt E, Yurkov V (2010) A new environment for aerobic anoxygenic phototrophic bacteria: biological soil crusts. Environ Microbiol Rep 2:651–656CrossRefPubMedGoogle Scholar
  18. da Rocha UN, Cadillo-Quiroz H, Karaoz U, Rajeev L, Klitgord N, Dunn S, Truong V, Buenrostro M, Bowen BP, Garcia-Pichel F, Mukhopadhyay A, Northen TR, Brodie EL (2015) Isolation of a significant fraction of non-phototroph diversity from a desert biological soil crust. Front Microbol 6:277Google Scholar
  19. Davies LO, Schäfer H, Marshall S, Bramke I, Oliver RG, Bending GD (2013) Light structures phototroph, bacterial and fungal communities at the soil surface. PloS One 8:e69048CrossRefPubMedPubMedCentralGoogle Scholar
  20. de los Rios A, Grube M (2000) Host-parasite interfaces of some lichenicolous fungi in the Dacampiaceae (Dothideales, Ascomycota). Mycol Res 104:1348–1353CrossRefGoogle Scholar
  21. de los Rios A, Ascaso C, Grube M (2002) An ultrastructural, anatomical and molecular study of the lichenicolous lichen Rimularia insularis. Mycol Res 106:946–953CrossRefGoogle Scholar
  22. Delmont TO, Robe P, Cecillon S, Clark IM, Constancias F, Simonet P, Hirsch PR, Vogel TM (2011) Accessing the soil metagenome for studies of microbial diversity. Appl Environ Microbiol 77:1315–1324CrossRefPubMedGoogle Scholar
  23. Elliott DR, Thomas AD, Hoon SR, Sen R (2014) Niche partitioning of bacterial communities in biological crusts and soils under grasses, shrubs and trees in the Kalahari. Biodivers Conserv 23(7):1709–1733, doi. 10.1007/s10531-014-0684-8CrossRefGoogle Scholar
  24. Erlacher A, Cernava T, Cardinale M, Soh J, Sensen CW, Grube M, Berg G (2015) Rhizobiales as functional and endosymbiotic members in the lichen symbiosis of Lobaria pulmonaria L. Front Microbiol 6:53CrossRefPubMedPubMedCentralGoogle Scholar
  25. Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso GJ (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. PNAS 109:21390–21395CrossRefPubMedPubMedCentralGoogle Scholar
  26. Friedl T (1987) Thallus development and phycobionts of the parasitic lichen Diploschistes muscorum. Lichenologist 19:183–191CrossRefGoogle Scholar
  27. Garcia-Pichel F, Wojciechowski MF (2009) The evolution of a capacity to build supra-cellular ropes enabled filamentous cyanobacteria to colonize highly erodible substrates. PLoS One 4:e7801CrossRefPubMedPubMedCentralGoogle Scholar
  28. Garcia-Pichel F, López-Cortés A, Nübel U (2001) Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. Appl Environ Microbiol 67:1902–1910CrossRefPubMedPubMedCentralGoogle Scholar
  29. Garcia-Pichel F, Johnson SL, Youngkin D, Belnap J (2003) Small-scale vertical distribution of bacterial biomass and diversity in biological soil crusts from arid lands in the Colorado Plateau. Microb Ecol 46:312–321CrossRefPubMedGoogle Scholar
  30. Gostincar C, Grube M, de Hoog S, Zalar P, Gunde-Cimerman N (2010) Extremotolerance in fungi: evolution on the edge. FEMS Microbiol Ecol 71:2–11CrossRefPubMedGoogle Scholar
  31. Green LE, Porras-Alfaro A, Sinsabaugh RL (2008) Translocation of nitrogen and carbon integrates biotic crust and grass production in desert grassland. J Ecol 96:1076–1085CrossRefGoogle Scholar
  32. Grube M, Hafellner J (1990) Studien an flechtenbewohnenden Pilzen der Sammelgattung Didymella (Ascomycetes, Dothideales). Nova Hedwigia 51:283–360Google Scholar
  33. Grube M, Cardinale M, de Castro JV, Müller H, Berg G (2009) Species-specific structural and functional diversity of bacterial communities in lichen symbiosis. ISME J 3:1105–1115CrossRefPubMedGoogle Scholar
  34. Grube M, Köberl M, Lackner S, Berg C, Berg G (2012) Host-parasite interaction and microbiome response: effects of fungal infections on the bacterial community of the Alpine lichen Solorina crocea. FEMS Microbiol Ecol 82:472–481CrossRefPubMedGoogle Scholar
  35. Grube M, Cernava T, Soh J, Fuchs S, Aschenbrenner I, Lassek C, Wegner U, Becher D, Riedel K, Sensen CW, Berg G (2015) Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. ISME J 9:412–424CrossRefPubMedGoogle Scholar
  36. Gundlapally SR, Garcia-Pichel F (2006) The community and phylogenetic diversity of biological soil crusts in the Colorado Plateau studied by molecular fingerprinting and intensive cultivation. Microb Ecol 52:345–357CrossRefPubMedGoogle Scholar
  37. Ives AR, Carpenter SR (2007) Stability and diversity of ecosystems. Science 317:58–62CrossRefPubMedGoogle Scholar
  38. Johnson SL, Kuske CR, Carney TD, Housman DC, Gallegos-Graves L (2012) Increased temperature and altered summer precipitation have differential effects on biological soil crusts in a dryland ecosystem. Glob Chang Biol 18:2583–2593CrossRefGoogle Scholar
  39. Jumpponen A (2001) Dark septate endophytes—are they mycorrhizal? Mycorrhiza 11:207–211CrossRefGoogle Scholar
  40. Kuske CR, Ticknor LO, Miller ME, Dunbar JM, Davis JA et al (2002) Comparison of soil bacterial communities in rhizospheres of three plant species and the interspaces in an arid grassland. Appl Environ Microbiol 68:1854–1863CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kuske CR, Yeager CM, Johnson S, Ticknor LO, Belnap J (2012) Response and resilience of soil biocrust bacterial communities to chronic physical disturbance in arid shrublands. ISME J 6:886–897CrossRefPubMedGoogle Scholar
  42. Lawrey JD, Diederich P (2011) Lichenicolous fungi—worldwide checklist, including isolated cultures and sequences. http://www.lichenicolous.net. Accessed 27 Jan 2012
  43. Lombard N, Prestat E, van Elsas JD, Simonet P (2011) Soil-specific limitations for access and analysis of soil microbial communities by metagenomics. FEMS Microbiol Ecol 78:31–49CrossRefPubMedGoogle Scholar
  44. Lumbsch HT, Ahti T, Altermann S, Paz ADG, Aptroot A, Arup U et al (2011) One hundred new species of lichenized fungi: a signature of undiscovered global diversity. Phytotaxa 18:1–127CrossRefGoogle Scholar
  45. Maier S, Schmidt TSB, Zheng L, Peer T, Wagner V et al. (2014) Analyses of dryland biological soil crusts highlight lichens as an important regulator of microbial communities. Biodivers Conserv 23:1735–1755CrossRefGoogle Scholar
  46. Mandyam K, Jumpponen A (2005) Seeking the elusive function of the root-colonising dark septate endophytic fungi. Stud Mycol 53:173–189CrossRefGoogle Scholar
  47. Marusenko Y, Huber DP, Hall SJ (2013) Fungi mediate nitrous oxide production but not ammonia oxidation in arid land soils of the southwestern US. Soil Biol Biochem 63:24–36CrossRefGoogle Scholar
  48. Moquin SA, Garcia JR, Brantley SL, Takacs-Vesbach CD, Shepherd UL (2012) Bacterial diversity of bryophyte-dominant biological soil crusts and associated mites. J Arid Environ 87:110–117CrossRefGoogle Scholar
  49. Muggia L, Klug B, Berg G, Grube M (2013) Localization of bacteria in lichens from Alpine soil crusts by fluorescence in situ hybridization. Appl Soil Ecol 68:20–25CrossRefGoogle Scholar
  50. Nagy ML, Pérez A, Garcia-Pichel F (2005) The prokaryotic diversity of biological soil crusts in the Sonoran Desert (Organ Pipe Cactus National Monument, AZ). FEMS Microbiol Ecol 54:233–245CrossRefPubMedGoogle Scholar
  51. Poelt J, Grube M (1993) Beiträge zur Kenntnis der Flechtenflora des Himalaya VIII. Lecanora subgen. Placodium. Nova Hedwigia 57:305–352Google Scholar
  52. Poelt J, Mayrhofer H (1988) Über Cyanotrophie bei Flechten. Plant Syst Evol 158:265–281CrossRefGoogle Scholar
  53. Pointing SB, Belnap J (2012) Microbial colonization and controls in dryland systems. Nat Rev Microbiol 10:551–562CrossRefPubMedGoogle Scholar
  54. Ranzoni FV (1968) Fungi isolated in culture from soils of the Sonoran desert. Mycologia 60:356–371CrossRefPubMedGoogle Scholar
  55. Reddy GSN, Garcia-Pichel F (2005) Dyadobacter crusticola sp. nov., from biological soil crusts in the Colorado Plateau, USA, and an emended description of the genus Dyadobacter Chelius and Triplett 2000. Int J Syst Evol Microbiol 55:1295–1299CrossRefPubMedGoogle Scholar
  56. Reddy GSN, Garcia-Pichel F (2007) Sphingomonas mucosissima sp. nov. and Sphingomonas dessicabilis sp. nov., isolated from biological soil crusts in the Colorado Plateau, USA. Int J Syst Evol Microbiol 57:1028–1034CrossRefPubMedGoogle Scholar
  57. Reddy GSN, Garcia-Pichel F (2009) Description of Patulibacter americanus sp. nov., isolated from biological soil crusts, emended description of the genus Patulibacter Takahashi et al. 2006 and proposal of Solirubrobacterales ord. nov. and Thermoleophilales ord. nov. Int J Syst Evol Microbiol 59:87–94CrossRefPubMedGoogle Scholar
  58. Reddy GS, Garcia-Pichel F (2013) Description of Hymenobacter arizonensis sp. nov. from the southwestern arid lands of the United States of America. Antonie Van Leeuwenhoek 103:321–330CrossRefPubMedGoogle Scholar
  59. Reddy GS, Garcia-Pichel F (2015) Description of Pseudomonas asuensis sp. nov. from biological soil crusts in the Colorado plateau, United States of America. J Microbiol 53:6–13CrossRefPubMedGoogle Scholar
  60. Reddy GSN, Nagy M, Garcia-Pichel F (2006) Belnapia moabensis gen. nov., sp. nov., an alphaproteobacterium from biological soil crusts in the Colorado Plateau, USA. Int J Syst Evol Microbiol 56:51–58CrossRefPubMedGoogle Scholar
  61. Reddy GSN, Potrafka R, Garcia-Pichel F (2007) Modestobacter versicolor sp. nov., an actinobacterium from biological soil crusts that produces melanins under oligotrophy, with emended descriptions of the genus Modestobacter and Modestobacter multiseptatus Mevs et al. 2000. Int J Syst Evol Microbiol 57:2014–2020CrossRefPubMedGoogle Scholar
  62. Souza-Egipsy V, Ascaso C, Sancho LG (2002) Water distribution within terricolous lichens revealed by scanning electron microscopy and its relevance in soil crust ecology. Mycol Res 10:1367–1374CrossRefGoogle Scholar
  63. Starkenburg SR, Reitenga KG, Freitas R, Johnson S, Chain RSG, Garcia-Pichel F, Kuske CR (2011) Genome of the cyanobacterium microcoleus vaginatus FGP-2, a photosynthetic ecosystem engineer of arid land soil biocrusts worldwide. J Bacteriol 193:4569–4570CrossRefPubMedPubMedCentralGoogle Scholar
  64. States JS (1978) Soil fungi of cool-desert plant communities in northern Arizona and South Utah. J Ariz Acad Sci 13:13–17Google Scholar
  65. States JS, Christensen M (2001) Fungi associated with biological soil crusts in desert grassland of Utah and Wyoming. Mycologia 93:432–439CrossRefGoogle Scholar
  66. Steven B, Gallegos-Graves l, Yeager CM, Belnap J, Evans RD et al (2012a) Dryland biological soil crust cyanobacteria show unexpected decreases in abundance under long-term elevated CO2. Environ Microbiol 14:3247–3258CrossRefPubMedGoogle Scholar
  67. Steven B, Gallagos-Graves LV, Starkenburg SR, Chain PS, Kuske CR (2012b) Targeted and shotgun metagenomic approaches provide different descriptions of dryland soil microbial communities in a manipulated field study. Environ Microbiol Rep 4:248–256CrossRefPubMedGoogle Scholar
  68. Steven B, Gallegos-Graves LV, Belnap J, Kuske CR (2013a) Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material. FEMS Microbiol Ecol 86:101–113CrossRefPubMedGoogle Scholar
  69. Steven B, Kuske C, Vincent WF (2013b) High bacterial diversity of biological soil crusts in water tracks over permafrost in the high arctic polar desert. Plos One 8(8):e71489, doi. 10.1371/journal.pone.0071489
  70. Steven B, Gallegos-Graves L, Yeager C, Belnap J, Kuske CR (2014) Common and distinguishing features of the bacterial and fungal communities in biological soil crusts and shrub root zone soils. Soil Biol Biochem 69:302–312CrossRefGoogle Scholar
  71. Steven B, Hesse C, Gallegos-Graves LV, Belnap J, Kuske CR (2015) Fungal diversity in biological soil crusts of the Colorado plateauGoogle Scholar
  72. Wedin M, Maier S, Fernandez-Brime S, Cronholm B, Westberg M, Grube M (2015) Microbiome change by symbiotic invasion in lichens. Environ Microbiol, doi. 10.1111/1462-2920.13032
  73. Yeager CM, Kornosky JL, Housman DC, Grote EE, Belnap J, Kuske CR (2004) Diazotrophic community structure and function in two successional stages of biological soil crusts from the Colorado Plateau and Chihuahuan Desert. Appl Environ Microbiol 70:973–983CrossRefPubMedPubMedCentralGoogle Scholar
  74. Yeager CM, Kornosky JL, Morgan RE, Cain EC, Garcia-Pichel F, Housman DC et al. (2007) Three distinct clades of cultured heterocystous cyanobacteria constitute the dominant N2-fixing members of biological soil crusts of the Colorado Plateau, USA. FEMS Microbiol Ecol 60:85–97CrossRefPubMedGoogle Scholar
  75. Zhang B, Zhang Y, Downing A, Niu Y (2011) Distribution and composition of cyanobacteria and microalgae associated with biological soil crusts in the Gurbantunggut Desert, China. Arid Land Res Manag 25:275–293CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Stefanie Maier
    • 1
  • Lucia Muggia
    • 2
  • Cheryl R. Kuske
    • 3
  • Martin Grube
    • 1
    Email author
  1. 1.Institute of Plant SciencesUniversity of GrazGrazAustria
  2. 2.Department of Life ScienceUniversity of TriesteTriesteItaly
  3. 3.Bioscience DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations