Advertisement

Cyanobacteria and Algae of Biological Soil Crusts

  • Burkhard BüdelEmail author
  • Tamara Dulić
  • Tatyana Darienko
  • Nataliya Rybalka
  • Thomas Friedl
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 226)

Abstract

Filamentous cyanobacteria are the key organisms in biological soil crust formation in all biomes of the world. However, especially in temperate, arctic, and high alpine regions, as well as in few dry Savannah ecosystems, filamentous green algae may act in a similar role. Here, we give an overview on the role, diversity, and biogeography of cyanobacteria and eukaryotic algae in biocrusts from all climatic regions and continents of the Earth. We refer to the species level wherever this is possible. Currently, there have been 320 species of cyanobacteria and more than 350 species of eukaryotic algae described from biocrusts. Despite this high diversity, only a minority of the cyanobacterial and algal species found is responsible for the bulk of biocrust formation. Others likely are opportunistic, utilizing the habitat created by biocrusts in the harsh regions of the Earth where habitable space is rare. We also discuss methods for the sampling and identification of biocrust algae and cyanobacteria.

Keywords

Supplementary Online Material Soil Crust Biological Soil Crust Crust Formation Eukaryotic Alga 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abed RMM, Al Kharusi S, Schramm A, Robinson MD (2010) Bacterial diversity, pigments and nitrogen fixation of biological desert crusts from the Sultanate of Oman. FEMS Microbiol Ecol 72:418–428CrossRefPubMedGoogle Scholar
  2. Abed RMM, Ramette A, Hübner V, De Deckker P, de Beer D (2012) Microbial diversity of eolian dust sources from saline lake sediments and biological soil crusts in arid Southern Australia. FEMS Microbiol Ecol 80:294–304CrossRefPubMedGoogle Scholar
  3. Belnap J, Lange OL (2003) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 1–503CrossRefGoogle Scholar
  4. Beraldi-Campesi H (2013) Early life on land and the first terrestrial ecosystems. Ecol Process 2:1–17CrossRefGoogle Scholar
  5. Boyer SL, Johansen JR, Flechtner VR (2002) Phylogeny and genetic variance in terrestrial Microcoleus (Cyanophyceae) species based on sequence analysis of the 16 rRNA gene and associated 16S-23S ITS region. J Phycol 38:1222–1235CrossRefGoogle Scholar
  6. Broady PA (1986) Ecology and taxonomy of terrestrial algae of Vestfold Hills. In: Pickard J (ed) Antarct oasis: terrestrial environments and history of the vestfold hills. Academic, London, pp 165–202Google Scholar
  7. Broady PA, Weinstein RN (1998) Algae, lichens and fungi in La Gorce Mountains, Antarctica. Antarct Sci 10:376–385CrossRefGoogle Scholar
  8. Büdel B (2003) Synopsis: comparative biogeography of soil-crust biota. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function and management. Springer, Berlin, pp 141–152Google Scholar
  9. Büdel B, Lüttge U, Stelzer R, Huber O, Medina E (1994) Cyanobacteria of rocks and soils in the Orinoco region and in the Guyana high-lands, Venezuela. Bot Acta 107:422–431CrossRefGoogle Scholar
  10. Büdel B, Darienko T, Deutschewitz K, Dojani S, Friedl T, Mohr KI, Salish M, Reisser W, Weber B (2009) Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb Ecol 57:229–247CrossRefPubMedGoogle Scholar
  11. Colesie C, Green TGA, Haferkamp I, Büdel B (2014) Habitat stress initiates changes in composition, CO2 gas exchange and C-allocation as life traits in biological soil crusts. ISME J 8:2104–2115CrossRefPubMedPubMedCentralGoogle Scholar
  12. Deb S, Sarma B, Rout J, Sengupta M (2013) Algal diversity in soil crusts of Assam University, Silchar Campus (North East India). Phykos 43:56–67Google Scholar
  13. Dojani S, Kauff F, Weber B, Büdel B (2014) Genotypic and phenotypic diversity of cyanobacteria in biological soil crusts of the Succulent Karoo and Nama Karoo of Southern Africa. Microb Ecol 67:286–301CrossRefPubMedGoogle Scholar
  14. Elliott DR, Thomas AD, Hoon SR, Sen R (2014) Niche partitioning of bacterial communities in biological crusts and soils under grasses, shrubs and trees in the Kalahari. Biodivers Conserv 23:1709–1733CrossRefGoogle Scholar
  15. Flechtner VR, Johansen JR, Clark WH (1998) Algal composition of microbiotic crusts from the Central Desert of Baja California, Mexico. Great Basin Nat 58:295–311Google Scholar
  16. Flechtner VR, Pietrasiak N, Lewis LA (2013) Newly revealed diversity of green microalgae from wilderness areas of Joshua Tree National Park (JTNP). Monogr West N Am Nat 6:43–63CrossRefGoogle Scholar
  17. Friedl T, Rybalka N (2012) Systematics of the green algae: a brief introduction to the current status. In: Lüttge U, Beyschlag W, Büdel B, Francis D (eds) Progress in botany, vol 73. Springer, Berlin, pp 259–280Google Scholar
  18. Fritsch FE, John RP (1942) An ecological and taxonomic study of the algae of British soils. II. Consideration of the species observed. Ann Bot NS 6:371–395Google Scholar
  19. Fucíková K, Lewis LA (2012a) Intersection of Chlorella, Muriella and Bracteacoccus: resurrecting the genus Chromochloris Kol et Chodat (Chlorophyceae, Chlorophyta). Fottea 12:83–93CrossRefGoogle Scholar
  20. Fucíková K, Lewis LA (2012b) Revision of the genus Bracteacoccus Tereg (Chlorophyceae, Chlorophyta) based on a phylogenetic approach. Nova Hedwigia 96:15–59CrossRefGoogle Scholar
  21. Fucíková K, Rada JS, Lukesová A, Lewis LA (2011) Cryptic diversity within the genus Pseudomuriella Hanagata (Chlorophyta, Chlorophyceae, Sphaeropleales) assessed using four barcode markers. Nova Hedwigia 93:29–46CrossRefGoogle Scholar
  22. Garcia-Pichel F, Wojciechowski MF (2009) The evolution of a capacity to build supra-cellular ropes enabled filamentous cyanobacteria to colonize highly erodible substrates. PLoS One 4:1–6CrossRefGoogle Scholar
  23. Giovannoni SJ, Turner S, Olsen GJ, Barns S, Lane DJ, Pace NR (1988) Evolutionary relationships among cyanobacteria and green chloroplasts. J Bacteriol 170:3584–3592PubMedPubMedCentralGoogle Scholar
  24. Gollerbach MM, Shtina EA (1969) Soil algae. Nauka, Leningrad, 228 p, Pochvennye vodorosli (in Russian)Google Scholar
  25. Gundlapally SR, Garcia-Pichel F (2006) The community and phylogenetic diversity of biological soil crusts in the Colorado Plateau studied by molecular fingerprinting and intensive cultivation. Microb Ecol 52:345–357CrossRefPubMedGoogle Scholar
  26. Hallmann C, Stannek L, Fritzlar D, Hause-Reitner D, Friedl T, Hoppert M (2013) Molecular diversity of phototrophic biofilms on building stone. FEMS Microbiol Ecol 84:355–372CrossRefPubMedGoogle Scholar
  27. Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1133CrossRefPubMedGoogle Scholar
  28. Hoppert M, Reimer R, Kemmling A, Schröder A, Günzl B, Heinken T (2004) Structure and reactivity of a biological soil crust from a xeric sandy Soil in Central Europe. Geomicrobiol J 21:183–191CrossRefGoogle Scholar
  29. Johansen JR, Kováčik L, Casamatta DA, Fučíková K, Kaštovský J (2011) Utility of 16S–23S ITS sequence and secondary structure for recognition of intrageneric and intergeneric limits within cyanobacterial taxa: Leptolyngbya corticola sp. nov. (Pseudanabaenaceae, Cyanobacteria). Nova Hedwigia 92:283–302CrossRefGoogle Scholar
  30. Kanda H, Ohtani S, Imura S (2002) Plant communities at Dronning Maud Land Geoecology of Antarctic ice-free coastal landscapes. Ecol Stud 154:249–264CrossRefGoogle Scholar
  31. Komárek J (2013) Cyanoprokaryota, part 3: heterocytous genera. In: Büdel B, Gärtner G, Krienitz L, Schagerl M (eds) Freshwaterflora of Central Europe, vol 19/3. Springer, Berlin, pp 1–1130Google Scholar
  32. Komárek J, Anagnostidis K (1998) Cyanoprokaryota, 1. Teil Chroococcales. In: Ettl H, Gärtner G, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa, vol 19/1. Gustav Fischer Verlag, Jena, pp 1–548Google Scholar
  33. Komárek J, Anagnostidis K (2005) Cyanoprokaryota, 2. Teil Oscillatoriales. In: Büdel B, Gärtner G, Krienitz L, Schagerl M (eds) Süßwasserflora von Mitteleuropa, vol 19/2. Elsevier GmbH, München, pp 1–759Google Scholar
  34. Kostikov I, Romanenko PO, Demchenko EM, Darienko TM, Mikhayljuk TI, Rybchynnskiy OV, Solonenko AM (2001) Soil algae of ukraine (Vodorosti gruntiv Ukrajiny). Phytosotsiologichniy Center, Kyiv, 300 pGoogle Scholar
  35. Langhans TM, Storm C, Schwabe A (2009) Community assembly of biological soil crusts of different successional stages in a temperate sand ecosystem, as assessed by direct determination and enrichment techniques. Microb Ecol 58:394–407CrossRefPubMedGoogle Scholar
  36. Lewis LA, Flechtner VR (2002) Green algae (Chlorophyta) of desert microbiotic crusts: diversity of North American taxa. Taxon 51:443–451CrossRefGoogle Scholar
  37. Lewis LA, Flechtner VR (2004) Cryptic species of Scenedesmus from desert soils of western North America. J Phycol 40:1127–1137CrossRefGoogle Scholar
  38. Li K, Liu R, Zhang H, Yun J (2013) The diversity and abundance of bacteria and oxygenic phototrophs in saline biological desert crusts in Xinjiang, Northwest China. Microb Ecol 66:40–48CrossRefPubMedGoogle Scholar
  39. Lin C-S, Wu J-T (2014) Environmental factors affecting the diversity and abundance of soil photomicrobes in arid lands of subtropical Taiwan. Geomicrobiol J 31(4):350–359. doi: 10.1080/01490451.2013.828135 CrossRefGoogle Scholar
  40. Maestre FT, Martin N, Díez B, López-Poma R, Santos F, Luque I, Cortina J (2006) Watering, fertilization, and slurry inoculation promote recovery of biological soil crust function in degraded soils. Microb Ecol 52:365–377CrossRefPubMedGoogle Scholar
  41. Maier S, Schmidt TSB, Zheng L, Peer T, Wagner V, Grube M (2014) Analyses of dryland biological soil crusts highlight lichens as an important regulator of microbial communities. Biodivers Conserv 23:1735–1755CrossRefGoogle Scholar
  42. Novakovskaya IV, Patova EN (2013) Algae of mountain tundra soils in the North and Polar Ural. Bull Nat Soc Moscow Sec Biol 118:57–66, Cyanoprokaryoty i vodorosli gorno-tundrovyh pochv Severnogo i Polyarnogo Urala. Bul. Moskova ispytateley prirody (in Russian)Google Scholar
  43. Novichkova-Ivanova LN (1980) Soil algae of phytocenoses of Sahara-Gobi Desert area. Nauka, Leningrad, 256 pp, Pochvennye vodorosli fitocenosov Saharo-Gobiyskoy pustynnoy oblasti (in Russian)Google Scholar
  44. Nübel U, Garcia-Pichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63:3327–3332PubMedPubMedCentralGoogle Scholar
  45. Patzelt DJ, Hodač L, Friedl T, Pietrasiak N, Johansen JR (2014) Biodiversity of soil cyanobacteria in the hyper-arid Atacama Desert, Chile. J Phycol 50:698–710CrossRefPubMedGoogle Scholar
  46. Peer T, Türk R, Gruber JP, Tschaikner A (2010) Species composition and pedological characteristics of biological soil crusts in high alpine ecosystem, Hohe Tauern, Austria. Eco Mont J Prot Mt Areas Res 2:23–30Google Scholar
  47. Redfield E, Barns SM, Belnap J, Daane L, Kuske CR (2002) Comparative diversity and composition of cyanobacteria in three predominant soil crusts of the Colorado Plateau. FEMS Microbiol Ecol 40:55–63CrossRefPubMedGoogle Scholar
  48. Reháková K, Johansen JR, Casamatta DA, Xuesong L, Vincent J (2007) Morphological and molecular characterization of selected desert soil cyanobacteria: three species new to science including Mojavia pulchra gen. et sp. nov. Phycologia 46:481–502CrossRefGoogle Scholar
  49. Rindi F, Mikhailyuk TI, Sluiman HJ, Friedl T, López-Bautista JM (2011) Phylogenetic relationships in Interfilum and Klebsormidium (Klebsormidiophyceae, Streptophyta). Mol Phylogenet Evol 58(2):218–231CrossRefPubMedGoogle Scholar
  50. Rumrich U, Rumrich M, Lange-Bertalot H (1989) Diatomeen als “Fensteralgen” in der Namib-Wüste und anderen ariden Gebieten von SWA/Namibia. Dinteria 20:23–30Google Scholar
  51. Ruprecht U, Brunauer G, Türk R (2014) High photobiont diversity in the common European soil crust lichen Psora decipiens. Biodivers Conserv 23:1771–1785CrossRefPubMedPubMedCentralGoogle Scholar
  52. Siegesmund MA, Johansen JR, Karsten U, Friedl T (2008) Coleofasciculus gen. nov. (Cyanobacteria): morphological and molecular criteria for revision of the genus Microcoleus Gomont. J Phycol 44:1572–1585CrossRefPubMedGoogle Scholar
  53. Steven B, Gallegos-Graves LV, Belnap J, Kuske CR (2013a) Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material. FEMS Microbiol Ecol 86:101–113CrossRefPubMedGoogle Scholar
  54. Steven B, Lionard M, Kuske CR, Vincent WF (2013b) High bacterial diversity of biological soil crusts in water tracks over permafrost in the high arctic polar desert. PLoS One 8:e71489. doi: 10.1371/journal.pone.0071489 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Vinogradova ON, Darienko TM (2008) Algae of Azovo-Syvashski National Park (Ukraine). Algologia 18:183–197, Vodorosli Azovo-Syvashskogo natsionalnogo parka (Ukraina) (in Russian)Google Scholar
  56. Watanabe Y, Martini JEJ, Ohmoto H (2000) Geochemical evidence for terrestrial ecosystems 2.6 billion years ago. Nature 408:574–578CrossRefPubMedGoogle Scholar
  57. Waterbury J, Stanier RY (1978) Patterns of growth and development in pleurocapsalean cyanobacteria. Microbiol Rev 42:2–44PubMedPubMedCentralGoogle Scholar
  58. Zaady E, Ben-David EA, Sher Y, Tzirkin R, Nejidat A (2010) Inferring biological soil crust successional stage using combined PLFA, DGGE, physical and biophysiological analyses. Soil Biol Biochem 42:842–849CrossRefGoogle Scholar
  59. Zhang W, Zhang G, Liu G, Dong Z, Chen T, Zhang M, Dyson P, Lizhe A (2012) Bacterial diversity and distribution in the southeast edge of the Tengger Desert and their correlation with soil enzyme activities. J Environ Sci 24:2004–2201CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Burkhard Büdel
    • 1
    Email author
  • Tamara Dulić
    • 2
  • Tatyana Darienko
    • 3
    • 4
  • Nataliya Rybalka
    • 4
    • 5
  • Thomas Friedl
    • 4
  1. 1.Plant Ecology and Systematics, Department of BiologyUniversity of KaiserslauternKaiserslauternGermany
  2. 2.Faculty of Sciences, Department for Biology and EcologyUniversity of Novi SadNovi SadSerbia
  3. 3.MG Kholodny Institute of BotanyNational Academy Science of UkraineKyivUkraine
  4. 4.Georg-August-Universität Göttingen, Experimentelle Phykologie und Sammlung von Algenkulturen (SAG)GöttingenGermany
  5. 5.Genomische und Angewandte MikrobiologieGöttingenGermany

Personalised recommendations