Advertisement

Terrestrial Ecosystems in the Precambrian

  • Hugo Beraldi-CampesiEmail author
  • Gregory J. Retallack
Part of the Ecological Studies book series (ECOLSTUD, volume 226)

Abstract

Although Precambrian (>550 Ma old) landscapes have been largely considered devoid of life and do not yield obvious traces indicative of terrestrial fossils (e.g., plant roots), there is now ample evidence for pervasive and diverse microbial communities on land billions of years before the Phanerozoic. Modern “biological soil crusts” or “biocrusts” are excellent analogs for terrestrial Precambrian ecosystems, especially because they develop in plantless deserts, and analogs of Precambrian “barren” lands. They provide an understanding on how ancient, land-based microbial communities could have functioned. Furthermore, biocrust microbes have a variety of adaptations to desiccation and high UV light radiation, which likely evolved well before macroscopic plants and animals. In this chapter, we present evidence for well-developed terrestrial ecosystems during the Precambrian and question conventional narratives that early life on Earth was restricted to aquatic environments. This evidence suggests that microbial life was abundant on the land since the Archean, and that such communities could have been quite complex in structure and functioning. The advancement on this knowledge is essential to better understand the evolution of the biosphere.

Keywords

Terrestrial Ecosystem Biological Soil Crust Pedogenic Process Rock Record Basal Sandstone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Allwood AC, Walter MR, Kamber BS, Marshall CP, Burch IW (2006) Stromatolite reef from the early Archaean era of Australia. Nature 441:714–718PubMedCrossRefGoogle Scholar
  2. Altinok E (2006) Soil formation beneath the Earth’s oldest known (3.46 Ga) unconformity? Geological Society of America Abstracts with Programs 38(7):533Google Scholar
  3. Aspler LB, Donaldson JA (1986) Paleoclimatology of Nonacho Basin (Early Proterozoic), Northwest territories, Canada. Palaeogeogr Palaeoclimatol Palaeoecol 56:17–34CrossRefGoogle Scholar
  4. Bambach RK (1999) Energetics in the global marine fauna: a connection between terrestrial diversification and change in the marine biosphere. Geobios 32(2):131–144CrossRefGoogle Scholar
  5. Bandopadhyay PC, Eriksson PG, Roberts RJ (2010) A vertic paleosol at the Archean-Proterozoic contact from the Singhbhum-Orissa craton, eastern India. Precambrian Res 177(3–4):277–290CrossRefGoogle Scholar
  6. Banerjee DM (1996) A lower Proterozoic paleosol at BGC–Aravalli boundary in south-central Rajasthan, India. J Geol Soc 48:277–288Google Scholar
  7. Behrensmeyer AK, Damuth JD, DiMichele WA, Potts R (1992) Terrestrial ecosystems through time: evolutionary paleoecology of terrestrial plants and animals. University of Chicago Press, Chicago, ILGoogle Scholar
  8. Belnap J, Lange OL (2001) Biological soil crusts: structure, function, and management, vol 150, Ecological studies series. Springer, BerlinGoogle Scholar
  9. Bengtson S, Rasmussen B, Krapež B (2007) The Paleoproterozoic megascopic Stirling biota. Paleobiology 33:351–381CrossRefGoogle Scholar
  10. Beraldi-Campesi H (2013) Early life on land and the first terrestrial ecosystems. Ecol Process 2:1–17CrossRefGoogle Scholar
  11. Beraldi-Campesi H, Garcia-Pichel F (2011) The biogenicity of modern terrestrial roll-up structures and its significance for ancient life on land. Geobiology 9:10–23PubMedCrossRefGoogle Scholar
  12. Beraldi-Campesi H, Farmer JD, Garcia-Pichel F (2014) Modern terrestrial sedimentary biostructures and their fossil analogs in Mesoproterozoic subaerial deposits. PALAIOS 29(2):45–54CrossRefGoogle Scholar
  13. Black LP (1984) U-Pb zircon ages and a revised chronology for the Tennant Creek Inlier, Northern Territory. Aust J Earth Sci 31:123–131CrossRefGoogle Scholar
  14. Blackwell M (2000) Terrestrial life: fungal from the start? Science 289(5486):1884–1885PubMedCrossRefGoogle Scholar
  15. Bose S, Chafetz HS (2009) Topographic control on distribution of modern microbially induced sedimentary structures (MISS): a case study from Texas coast. Sediment Geol 213:136–149CrossRefGoogle Scholar
  16. Bouougri EH, Porada H (2012) Wind-induced mat deformation structures in recent tidal flats and sabkhas of SE-Tunisia and their significance for environmental interpretation of fossil structures. Sediment Geol 263–264:56–66CrossRefGoogle Scholar
  17. Buick R, Thornett JR, McNaughton NJ, Smith JB, Barley ME, Savage M (1995) Record of emergent continental crust 3.5 billion years ago in the Pilbara Craton of Australia. Nature 375:574–577CrossRefGoogle Scholar
  18. Butterfield NJ (2005) Probable Proterozoic fungi. Paleobiology 31:165–182CrossRefGoogle Scholar
  19. Cloud P, Germs A (1971) New pre-paleozoic nannofossils from the Stoer formation (Torridonian), Northwest Scotland. Geol Soc Am Bull 82:3469–3474CrossRefGoogle Scholar
  20. Collins SL, Sinsabaugh RL, Crenshaw C, Green L, Porras-Alfaro A, Stursova M, Zeglin LH (2008) Pulse dynamics and microbial processes in aridland ecosystems. J Ecol 96:413–420CrossRefGoogle Scholar
  21. Corcoran PL, Mueller WU (2004) Aggressive Archaean weathering. In: Eriksson PG, Altermann W, Nelson DR, Mueller WU, Catuneanu O (eds) The Precambrian Earth: tempos and events, vol 12, Developments in Precambrian geology. Elsevier, Amsterdam, pp 494–504Google Scholar
  22. Demicco RV, Hardie LA (1995) Sedimentary structures and early diagenetic features of shallow marine carbonate deposits. SEPM (Society for Sedimentary Geology). Atlas series no. 1. Tulsa, OKGoogle Scholar
  23. DiMichele WA, Hook RW (1992) Paleozoic terrestrial ecosystems. In: Behrensmeyer AK, Damuth JD, DiMichele WA, Potts R, Suess HD, Wing SL (eds) Terrestrial ecosystems through time. Chicago University Press, Chicago, pp 205–325Google Scholar
  24. Dong L, Xiao S, Shen B, Zhou C (2008) Silicified Horodyskia and Palaeopascichnus from upper Ediacaran cherts in South China: phylogenetic interpretation and implications for evolutionary stasis. J Geol Soc Lond 165:365–378CrossRefGoogle Scholar
  25. Driese SG, Gordon-Medaris L Jr (2008) Evidence for biological and hydrological controls on the development of a Paleoproterozoic paleoweathering profile in the Baraboo Range, Wisconsin, USA. J Sediment Res 78:443–457CrossRefGoogle Scholar
  26. Driese SG, Simpson EL, Eriksson KA (1995) Redoximorphic paleosols in alluvial and lacustrine deposits, 1.8 Ga lochness formation, Mount Isa, Australia: pedogenic processes and implications for paleoclimate. J Sediment Res A65:675–689Google Scholar
  27. Driese SG, Jirsa MA, Hren M, Brantley SM, Sheldon ND, Parker D, Schmitz M (2011) Neoarchean paleoweathering of tonalite and metabasalt: implications for reconstructions of 2.69 Ga early terrestrial ecosystems and paleoatmospheric chemistry. Precambrian Res 189:1–17CrossRefGoogle Scholar
  28. Dutkiewicz A, Volk H, George SC, Ridley J, Buick R (2006) Biomarkers from Huronian oil-bearing fluid inclusions: an uncontaminated record of life before the Great Oxidation Event. Geology 34:437–440CrossRefGoogle Scholar
  29. Eriksson PG, Simpson EL, Eriksson KA, Bumby AJ, Steyn GL, Sarkar S (2000) Muddy roll-up structures in siliciclastic interdune beds of the c. 1.8 Ga Waterberg Group, South Africa. PALAIOS 15:177–183CrossRefGoogle Scholar
  30. Eriksson PG, Altermann W, Nelson DR, Mueller WU, Catuneanu O (eds) (2004) The Precambrian Earth: tempos and events, vol 12, Developments in Precambrian geology. Elsevier, AmsterdamGoogle Scholar
  31. Eriksson PG, Schieber J, Bouougri E, Gerdes G, Porada H, Banerjee S, Bose PK, Sarkar S (2007) Classification of structures left by microbial mats in their host sediments. In: Bose PK, Eriksson PG, Banerjee S, Sarkar S, Altermann W, Catuneau O, Catuneau O, Schieber J (eds) Atlas of microbial mat features preserved within the clastic rock record. Elsevier, Amsterdam, pp 39–52Google Scholar
  32. Esteban M, Klappa CF (1983) Subaerial exposure environments. In: Scholle PA, Bebout PG, Moore CH (eds) Carbonate depositional environments. Am Assoc Petrol Geol Mam 33:1–72Google Scholar
  33. Fagerstrom JA (1967) Development flotation and transportation of mud crusts—neglected factors in sedimentology. J Sediment Petrol 37:73–79CrossRefGoogle Scholar
  34. Farrow CE, Mossman DJ (1988) Geology of Precambrian paleosols at the base of the Huronian supergroup, Elliot Lake, Ontario, Canada. Precambrian Res 42:107–139CrossRefGoogle Scholar
  35. Fedonkin MA, Yochelson EL (2002) Middle Proterozoic (1.5 Ga) Horodyskia moniliformis, the oldest known tissue-grade colonial eukaryote. Smithson Contrib Paleobiol 94:1–29CrossRefGoogle Scholar
  36. Gall Q (1994) The Proterozoic Thelon paleosol, Northwest Territories, Canada. Precambrian Res 68:115–137CrossRefGoogle Scholar
  37. Garcia-Pichel F, Wojciechowski MF (2009) The evolution of a capacity to build supra-cellular ropes enabled filamentous cyanobacteria to colonize highly erodible substrates. PLoS One 4:e7801PubMedPubMedCentralCrossRefGoogle Scholar
  38. Gay AL, Grandstaff DE (1980) Chemistry and mineralogy of Precambrian paleosols at Elliot Lake, Ontario, Canada. Precambrian Res 12:349–373CrossRefGoogle Scholar
  39. Gensel PG (2008) The earliest land plants. Annu Rev Ecol Evol Syst 39:459–477CrossRefGoogle Scholar
  40. Gerdes G (2003) Biofilms and macroorganisms. In: Krumbein WE, Paterson DM, Zavarzin GA (eds) Fossil and recent biofilms: a natural history of life on earth. Springer, Netherland, pp 197–216CrossRefGoogle Scholar
  41. Gerdes G, Claes M, Dunajtschik-Piewak K, Riege H, Krumbein W, Reineck HE (1993) Contribution of microbial mats to sedimentary surface structures. FACIES 29:61–74CrossRefGoogle Scholar
  42. Gerdes G, Klenke T, Noffke N (2000) Microbial signatures in peritidal siliciclastic sediments: a catalogue. Sedimentology 47:279–308CrossRefGoogle Scholar
  43. Grandstaff DE, Edelman MJ, Foster RW, Zbinden E, Kimberley MM (1986) Chemistry and mineralogy of Precambrian paleosols at the base of the Dominion and Pongola Groups. Precambrian Res 32:97–131CrossRefGoogle Scholar
  44. Gray J, Boucot AJ (1994) Early Silurian nonmarine animal remains and the nature of the early continental ecosystem. Acta Palaeontol Pol 38(3–4):303–328Google Scholar
  45. Gray J, Shear WA (1992) Early life on land. Am Sci 80:444–456Google Scholar
  46. Grey K (2005) Ediacaran palynology of Australia. Assoc Australas Palaeontol Mem 31:439 pGoogle Scholar
  47. Grey K, Williams IR (1990) Problematic bedding-plane markings from the Middle Proterozoic manganese subgroup, Bangemall Basin, Western Australia. Precambrian Res 46:307–327CrossRefGoogle Scholar
  48. Gutzmer J, Beukes NJ (1998) Earliest laterites and possible evidence for terrestrial vegetation in the Early Proterozoic. Geology 26:263–266CrossRefGoogle Scholar
  49. Hagadorn JW, Bottjer DJ (1997) Wrinkle structures: microbially mediated sedimentary structures common in subtidal siliciclastic settings at the Proterozoic-Phanerozoic transition. Geology 25:1047–1050CrossRefGoogle Scholar
  50. Hagadorn JW, Pfluger F, Bottjer DJ (1999) Unexplored microbial worlds. PALAIOS 14:1–2CrossRefGoogle Scholar
  51. Hallbauer DK, van Warmelo KT (1974) Fossilized plants in thucholite from Precambrian rocks of the Witwatersrand, South Africa. Precambrian Res 1:199–212CrossRefGoogle Scholar
  52. Hallbauer DK, Jahns MH, Beltmann HA (1977) Morphological observations on some Precambrian plants from the Witwatersrand, South Africa. Geol Rundsch 66:477–491CrossRefGoogle Scholar
  53. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108PubMedCrossRefGoogle Scholar
  54. Hickman AH (2008) Regional review of the 3426–3350 Ma Strelley Pool Formation, Pilbara Craton, Western Australia. Geological Survey of Western Australia, Record 2008/15Google Scholar
  55. Hoffman PF (1995) The oldest terrestrial landscape. Nature 375(6532):537–538CrossRefGoogle Scholar
  56. Hofmann HJ (2001) Ediacaran enigmas, and puzzles from earlier times. Geol Assoc Canada Mineral Assoc Canada Joint Ann Meet Abstr 26:64–65Google Scholar
  57. Holland HD, Zbinden EA (1988) Paleosols and the evolution of the atmosphere: Part I. In: Lerman A, Meybeck M (eds) Physical and chemical weathering in geochemical cycles. Kluwer Academic, Dordrecht, The Netherlands, pp 61–82CrossRefGoogle Scholar
  58. Horodyski RJ, Knauth PL (1994) Life on land in the Precambrian. Science 263(5146):494–498PubMedCrossRefGoogle Scholar
  59. Hupe P (1952) Sur des problematica du Precambrien III. Division des Mines et de la Géologie, Service Géologique de Morocco, Notes et Memoires 103:297–383Google Scholar
  60. Jackson TA (1967) Fossil Actinomycetes in Middle Precambrian glacial varves. Science N Ser 155(3765):1003–1005CrossRefGoogle Scholar
  61. Johnson I, Watanabe Y, Stewart B, Ohmoto H (2009) Earth’s oldest (~3.4 Ga) lateritic paleosol in the Pilbara Craton, Western Australia. Proceedings of the Goldschmidt conference, Davos, SwitzerlandGoogle Scholar
  62. Johnson I, Watanabe Y, Stewart B, Ohmoto H (2010) Evidence for terrestrial life and an O2-rich atmosphere in the oldest (~3.4 Ga) paleosol in the east Pilbara craton, Western Australia. Proceedings of the 6th Astrobiology Science Conference, League City, TX, 20–26 Apr 2010Google Scholar
  63. Kimberley MM, Grandstaff DE (1986) Profiles of elemental concentrations in Precambrian paleosols on basaltic and granitic parent materials. Precambrian Res 32:133–154CrossRefGoogle Scholar
  64. Knoll A, Javaux E, Hewitt D, Cohen P (2006) Eukaryotic organisms in Proterozoic oceans. Philos Trans R Soc Lond Ser B Biol Sci 361:1023–1038CrossRefGoogle Scholar
  65. Lannerbro R (1954) Description of some structures, possibly fossils, in Jotnian sandstone from Mångsbodarna in Dalecarlia. Geologiska Föreningens I Stockholm Förhandlingar 76:46–50CrossRefGoogle Scholar
  66. Lowe DR (1983) Restricted shallow-water sedimentation of early Archean Stromatolitic and Evaporitic Strata of the Strelley Pool Chert, Pilbara Block, Western Australia. Precambrian Res 19:239–283CrossRefGoogle Scholar
  67. Macfarlane AW, Danielson A, Holland HD (1994) Geology and major and trace element chemistry of the late Archean weathering profiles in the Fortescue Group, Western Australia: implications for atmospheric pO2. Precambrian Res 65:297–317CrossRefGoogle Scholar
  68. Martini JEJ (1994) A late Archaean–Palaeoproterozoic (2.6 Ga) palaeosol on ultramafics in the eastern Transvaal, South Africa. Precambrian Res 67:159–180CrossRefGoogle Scholar
  69. McConnell RL (1974) Preliminary report of microstructures of probable biologic origin from the Mescal Formation (Proterozoic) of central Arizona. Precambrian Res 1(3):227–234CrossRefGoogle Scholar
  70. Mihail JD, Bruhn JN (2005) Foraging behaviour of Armillaria rhizomorph systems. Mycol Res 109:1195–1207PubMedCrossRefGoogle Scholar
  71. Moczydłowska M, Landing E, Zang W, Palacios T (2011) Proterozoic phytoplankton and the timing of chlorophyte algae origins. Palaeontology 54:721–733CrossRefGoogle Scholar
  72. Mossman DJ, Minter WEL, Dutkiewicz A, Hallbauer DK, George SC, Hennigh Q, Reimer TO, Horscroft FD (2008) The indigenous origin of Witwatersrand “carbon”. Precambrian Res 164:173–186CrossRefGoogle Scholar
  73. Navarro-González R, Rainey FA, Molina P, Bagalay DR, Hollen BJ, de la Rosa J, Small AM, Quinn RC, Grunthaner FJ, Caceres L, Gomez-Silva B, McKay CP (2003) Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science 302:1018–1021PubMedCrossRefGoogle Scholar
  74. Neaman A, Chorover J, Brantley SL (2005) Element mobility patterns record organic ligands in soils on early Earth. Geology 33:117–120CrossRefGoogle Scholar
  75. Nesbitt HW, Young GM (2004) Aggressive Archaean weathering. In: Eriksson PG, Altermann W, Nelson DR, Mueller WU, Catuneanu O (eds) The Precambrian Earth: tempos and events, vol 12, Developments in Precambrian geology. Elsevier, Amsterdam, pp 482–493Google Scholar
  76. Noffke N (2009) The criteria for the biogenicity of microbially induced sedimentary structures (MISS) in Archean and younger, sandy deposits. Earth Sci Rev 96:173–180CrossRefGoogle Scholar
  77. Noffke N (2010) Geobiology: microbial mats in sandy deposits from the Archean Era to today. Springer, BerlinCrossRefGoogle Scholar
  78. Noffke N, Gerdes G, Klenke T, Krumbein WE (1997) A microscopic sedimentary succession of graded sand and microbial mats in modern siliciclastic tidal flats. Sediment Geol 110:1–6CrossRefGoogle Scholar
  79. Noffke N, Gerdes G, Klenke T, Krumbein WE (2001) Microbially induced sedimentary structures indicating climatological, hydrological and depositional conditions within recent and pleistocene coastal facies zones (Southern Tunisia). FACIES 44:23–30CrossRefGoogle Scholar
  80. Noffke N, Beukes N, Bower D, Hazen RM, Swift DJP (2008) An actualistic perspective into Archean worlds: (cyano-)bacterially induced sedimentary structures in the siliciclastic Nhlazatse Section, 2.9 Ga Pongola Supergroup, South Africa. Geobiology 6:5–20PubMedCrossRefGoogle Scholar
  81. Noffke N, Christian D, Wacey D, Hazen RM (2013) Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old dresser formation, Pilbara, Western Australia. Astrobiology 13:1103–1124PubMedPubMedCentralCrossRefGoogle Scholar
  82. Nutman AP, Friend CRL, Bennett VC, Wright D, Norman MD (2010) ≥3700 Ma pre-metamorphic dolomite formed by microbial mediation in the Isua supracrustal belt (W. Greenland): simple evidence for early life? Precambrian Res 183:725–737CrossRefGoogle Scholar
  83. Ohmoto H, Watanabe Y, Allwood A, Burch I, Knauth P, Yamaguchi K, Johnson I, Altinok E (2007) Formation of probable lateritic soils ~3.43 Ga in the Pilbara Craton, Western Australia. Geochimica et Cosmochimica Acta Suppl 71(15):A733Google Scholar
  84. Pandit MK, de Wall H, Chauhan NK (2008) Paleosol at the Archean-Proterozoic contact in NW India revisited: evidence for oxidizing conditions during paleo-weathering? J Earth Syst Sci 117(3):201–209CrossRefGoogle Scholar
  85. Papineau D, DeGregorio BT, Cody GD, Fries MD, Mojzsis SJ, Steele A, Stroud RM, Fogel ML (2010) Ancient graphite in the Eoarchean quartz-pyroxene rock from Akilia in southwest Greenland I: petrographic and spectroscopic characterization. Geochim Cosmochim Acta 74:5862–5883CrossRefGoogle Scholar
  86. Pfluger F, Gresse PG (1996) Microbial sand chips—a non-actualistic sedimentary structure. Sediment Geol 102:263–274CrossRefGoogle Scholar
  87. Picard MD, High LR (1973) Sedimentary structures of ephemeral streams. Elsevier, Amsterdam, 223 pGoogle Scholar
  88. Pirozynski KA (1976) Fungal spores in the fossil record. Biol Memoir 1:104–120Google Scholar
  89. Poelt J, Baumgärtner H (1964) Über Rhizinenstränge bei placodialen Flechten. Österreich Botanische Zeitschrift 111:1–18CrossRefGoogle Scholar
  90. Porada H, Bouougri E (2007) Wrinkle structures—a critical review. Earth Sci Rev 81:199–215CrossRefGoogle Scholar
  91. Prasad N, Roscoe SM (1996) Evidence of anoxic to oxic atmospheric change during 2.45-2.22 Ga from lower and upper sub-Huronian paleosols, Canada. Catena 27:105–121CrossRefGoogle Scholar
  92. Prave AR (2002) Life on land in the Proterozoic: evidence from the Torridonian rocks of northwest Scotland. Geology 30(9):811–814CrossRefGoogle Scholar
  93. Reimer TO (1986) Alumina-rich rocks from the Early Precambrian of the Kaapvaal craton as indicators of paleosols and as products of other decompositional reactions. Precambrian Res 32:155–179CrossRefGoogle Scholar
  94. Reineck HE, Gerdes G, Claes M, Dunajtschik K, Riege H, Krumbein WE (1990) Microbial modification of sedimentary surface structures. In: Heling D, Rothe P, Forstner U, Stoffers P (eds) Sediments and environmental geochemistry: selected aspects and case histories. Springer, Berlin, pp 254–276CrossRefGoogle Scholar
  95. Retallack GJ (1986) Reappraisal of a 2200 Ma-old paleosol near Waterval Onder, South Africa. Precambrian Res 32:195–232CrossRefGoogle Scholar
  96. Retallack GJ (2001) Soils of the past, 2nd edn. Blackwell Science, LondonCrossRefGoogle Scholar
  97. Retallack GJ (2011) Problematic megafossils in Cambrian palaeosols of South Australia. Palaeontology 54:1223–1242CrossRefGoogle Scholar
  98. Retallack GJ (2012) Criteria for distinguishing microbial mats and earths. In: Noffke N, Chafetz H (eds) Microbial mats in siliciclastic depositional systems through time, SEPM Special Publication no 101. Society for Sedimentary Geology, Tulsa, OK, pp 139–152Google Scholar
  99. Retallack GJ (2013) Ediacaran life on land. Nature 493:89–92PubMedCrossRefGoogle Scholar
  100. Retallack GJ, Mindszenty A (1994) Well preserved Late Precambrian paleosols from northwest Scotland. J Sediment Res A64:264–281Google Scholar
  101. Retallack GJ, Krull ES, Thackray GD, Parkinson D (2013a) Problematic urn-shaped fossils from a Paleoproterozoic (2.2 Ga) paleosol in South Africa. Precambrian Res 235:71–87CrossRefGoogle Scholar
  102. Retallack GJ, Dunn KL, Saxby J (2013b) Problematic Mesoproterozoic fossil Horodyskia from Glacier National Park, Montana, USA. Precambrian Res 226:125–142CrossRefGoogle Scholar
  103. Rosentreter R, Bowker M, Belnap J (2007) A field guide to biological soil crusts of western U.S. drylands: common lichens and bryophytes. U.S. Government Printing Office, Denver, CO, p 104Google Scholar
  104. Rye R, Holland HD (1998) Paleosols and the rise of atmospheric oxygen: a critical review. Am J Sci 298:621–672PubMedCrossRefGoogle Scholar
  105. Rye R, Holland HD (2000) Life associated with a 2.76 Ga ephemeral pond? Evidence from Mount Roe #2 paleosol. Geology 28:483–486PubMedCrossRefGoogle Scholar
  106. Sadler PM (1981) Sediment accumulation rates and the completeness of stratigraphic sections. J Geol 89:569–584CrossRefGoogle Scholar
  107. Santosh M (2010) A synopsis of recent conceptual models on supercontinent tectonics in relation to mantle dynamics, life evolution and surface environment. J Geodyn 50(3–4):116–133CrossRefGoogle Scholar
  108. Sarkar S, Bose PK, Samanta P, Sengupta P, Eriksson PG (2008) Microbial mat mediated structures in the Ediacaran Sonia Sandstone, Rajasthan, India, and their implications for proterozoic sedimentation. Precambrian Res 162:248–263CrossRefGoogle Scholar
  109. Schaefer BF, Pearson DG, Rogers NW, Barnicoat AC (2010) Re/Os isotope and PGE constraints on the timing and origin of gold mineralization in the Witwatersrand Basin. Chem Geol 276:88–94CrossRefGoogle Scholar
  110. Schidlowski M (2001) Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambrian Res 106:117–134CrossRefGoogle Scholar
  111. Schieber J (1999) Microbial mats in terrigenous clastics: the challenge of identification in the rock record. PALAIOS 14:3–12CrossRefGoogle Scholar
  112. Schieber J (2004) Microbial mats in the siliciclastic rock record: a summary of diagnostic features. In: Eriksson PG, Altermann W, Nelson DR, Mueller WU, Catuneanu O (eds) Precambrian earth: tempos and events. Elsevier, Amsterdam, pp 663–673Google Scholar
  113. Schieber J (2007) Flume experiments on the durability of sandy microbial mat fragments during transport. In: Schieber J, Bose PK, Eriksson PG, Banerjee S, Sarkar S, Altermann W, Catuneau O (eds) Atlas of microbial mat features preserved within the clastic rock record. Elsevier, Amsterdam, pp 248–257Google Scholar
  114. Schmidt PW, Williams GE (2008) Palaeomagnetism of red beds from the Kimberly Group, Western Australia: implications for the palaeogeography of the 1.8 Ga King Leopold glaciation. Precambrian Res 167:267–280CrossRefGoogle Scholar
  115. Schopf JW (ed) (1983) Earth’s earliest biosphere. Princeton University Press, Princeton, NJGoogle Scholar
  116. Schopf JW, Klein C (eds) (1992) The Proterozoic biosphere. Cambridge University Press, New YorkGoogle Scholar
  117. Schopf JW, Kudryavtsev AB, Czaja AD, Tripathi AB (2007) Evidence of Archean life: stromatolites and microfossils. Precambrian Res 158:145–151Google Scholar
  118. Schüßler A, Kluge M (2000) Geosiphon pyriformis, an endocytosymbiosis between fungus and cyanobacteria, and its meaning as a model system for arbuscular mycorrhizal research. In: Hock B (ed) The mycota, vol IX. Springer, Berlin, pp 151–161Google Scholar
  119. Shear WA (1991) The early development of terrestrial ecosystems. Nature 351:283–289CrossRefGoogle Scholar
  120. Shepard RN, Sumner DY (2010) Undirected motility of filamentous cyanobacteria produces reticulate mats. Geobiology 8:179–190PubMedCrossRefGoogle Scholar
  121. Simonson BM, Carney KE (1999) Roll-up structures: evidence of in situ microbial mats in late archean deep shelf environments. PALAIOS 14:13–24CrossRefGoogle Scholar
  122. Simpson EL, Heness EA, Bumby AJ, Eriksson PG, Eriksson KA, Hilbert Wolf HA, Linnevelt S, Malenda HF, Modungwa T, Okafor OJ (2013) Evidence for 2.0 Ga Continental Microbial mats in a paleodesert setting. Precambrian Res 237:36–50CrossRefGoogle Scholar
  123. Strother PK, Battison L, Brasier MD, Wellman CH (2011) Earth’s earliest non-marine eukaryotes. Nature 473:505–509PubMedCrossRefGoogle Scholar
  124. Sugitani K, Mimura K, Nagaoka T, Lepot K, Takeuchi M (2013) Microfossil assemblage from the 3400 Ma Strelley Pool Formation in the Pilbara Craton, Western Australia: results form a new locality. Precambrian Res 226:59–74CrossRefGoogle Scholar
  125. Tomescu AMF, Pratt LM, Rothwell GW, Strother PK, Nadon GC (2009) Carbon isotopes support the presence of extensive land floras pre-dating the origin of vascular plants. Palaeogeogr Palaeoclimatol Palaeoecol 283:46–59CrossRefGoogle Scholar
  126. van Kranendonk MJ (2000) Geology of the North Shaw 1:100,000 sheet. Geological survey of Western Australia explanatory notes, 86 pGoogle Scholar
  127. Voigt E (1972) Tonrollen als potentielle Pseudofossilien. Nat Mus 102(11):401–410Google Scholar
  128. Wacey D, Kilburn MR, McLoughlin N, Parnell J, Stokes CA, Brasier MD (2008) Use of NanoSIMS to investigate early life on Earth: ambient inclusion trails within a ca. 3400 Ma sandstone. J Geol Soc Lond 165:43–45CrossRefGoogle Scholar
  129. Watanabe Y, Martini JEJ, Ohmoto H (2000) Geochemical evidence for terrestrial ecosystems 2.6 billion years ago. Nature 408:574–578PubMedCrossRefGoogle Scholar
  130. Yang W, Holland HD (2003) The Hekpoort paleosol in strata 1 at Garborone, Botswana: soil formation during the Great Oxidation Event. Am J Sci 303:187–220CrossRefGoogle Scholar
  131. Yang S, Zheng Z (1985) The Sinian trace fossils from Zhengmuguan Formation of Helanshan Mountain, Ningxia. Earth Sci J Wuhan Coll Geol 10:9–18Google Scholar
  132. Zbinden EA, Holland HD, Feakes CR, Dobos SK (1988) The Sturgeon Falls paleosol and the composition of the atmosphere 1.1 Ga BP. Precambrian Res 42:141–163PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Instituto de GeologiaUniversidad Nacional Autonoma de MexicoMexico, DFMexico
  2. 2.Geological SciencesUniversity of OregonEugeneUSA

Personalised recommendations