Skip to main content

Patterns and Controls on Nitrogen Cycling of Biological Soil Crusts

Part of the Ecological Studies book series (ECOLSTUD,volume 226)

Abstract

In low-nutrient environments with few vascular plant symbiotic N fixers, biocrusts play an important role in ecosystem N cycling. A large number of studies across a wide range of biomes clearly confirm that not only the presence of biocrusts but biocrust community composition strongly influences N-fixation activity, with N fixation increasing with level of development (cyanobacterial-lichen biocrusts > dark cyanobacterial biocrust (e.g., Nostoc spp. and Collema spp.) > light Microcoleus-dominated biocrust). Nitrogen fixation by biocrusts results in N release to the soil in a variety of N forms (inorganic and organic N), thus elevating soil inorganic N pools in the top few millimeters of soil. The influence of N release on the bulk soil at greater soil depths is less clear, with biocrusts either elevating or having no influence on bulk soil inorganic N pools. The fate of N fixed and released by biocrusts, and whether this N is retained in the ecosystem in either soils or plants, determines ecosystem N balance over longer time scales, and results on the influence of biocrusts are mixed. Whereas we have multiple studies that examine a single compartment of N budgets, we lack studies that simultaneously address N inputs, losses, and soil and plant pools, thus precluding the construction of definitive N balances. One of the most consistent impact biocrusts have on ecosystem N is reducing N loss via wind and water erosion, with such losses consistently decreasing with increasing biocrust development.

Keywords

  • Nitric oxideNitric Oxide
  • Soil Organic Carbon
  • Anaerobic Ammonium Oxidation
  • Denitrification Rate
  • Biological Soil Crust

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abed RMM, Lam P, de Beer D, Stief P (2013) High rates of denitrification and nitrous oxide emission in arid biological soil crusts from the Sultanate of Oman. ISME J 7:1862–1875

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Allington GRH, Valone TJ (2014) Islands of fertility: a byproduct of grazing? Ecosystems 17:127–141. doi:10.1007/s10021-013-9711-y

    CrossRef  Google Scholar 

  • Aranibar JN, Anderson IC, Ringrose S, Macko SA (2003) Importance of nitrogen fixation in soil crusts of southern African arid ecosystems: acetylene reduction and stable isotope studies. J Arid Environ 54:345–358

    CrossRef  Google Scholar 

  • Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Shaeffer SM (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–235

    CrossRef  PubMed  Google Scholar 

  • Baran R, Brodie EL, Mayberry-lewis J, Hummel E, Nunes U, Rocha D, Chakraborty R, Bowen BP, Karaoz U, Cadillo-quiroz H, Garcia-Pichel F, Northen TR (2015) Soil Bacteria. Nat Commun 6:1–9. doi:10.1038/ncomms9289

    CrossRef  CAS  Google Scholar 

  • Barger NN (2003) Biogeochemical cycling and N dynamics of biological soil crusts in a semi-arid ecosystem. Ph.D. dissertation. Colorado State University, Fort Collins, CO, pp 131

    Google Scholar 

  • Barger NN, Belnap J, Ojima DS, Mosier A (2005) NO gas loss from biologically crusted soils in canyonlands national park, Utah. Biogeochemistry 75:373–391

    CrossRef  CAS  Google Scholar 

  • Barger NN, Herrick JE, Van Zee J, Belnap J (2006) Impacts of biological soil crust disturbance and composition on C and N loss from water erosion. Biogeochemistry 77:247–263. doi:10.1007/s10533-005-1424-7

    CrossRef  CAS  Google Scholar 

  • Barger NN, Castle SC, Dean GN (2013) Denitrification from nitrogen-fixing biologically crusted soils in a cool desert environment, southeast Utah, USA. Ecol Process 2:16

    CrossRef  Google Scholar 

  • Barr D (1999) Biotic and abiotic regulation of nitrogen dynamics in biological soil crusts. M.S. Thesis. Northern Arizona University, Flagstaff, AZ

    Google Scholar 

  • Belnap J (2002a) Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biol Fertil Soils 35:128–135

    CrossRef  CAS  Google Scholar 

  • Belnap J (2002b) Impacts of off road vehicles on nitrogen cycles in biological soil crusts: resistance in different US deserts. J Arid Environ 52:155–165

    CrossRef  Google Scholar 

  • Belnap J (2003) Factors influencing nitrogen fixation and nitrogen release in biological soil crusts. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 241–261

    CrossRef  Google Scholar 

  • Belnap J, Lange O (2003) Biological soil crusts: structure, function, and management. Springer, Berlin

    CrossRef  Google Scholar 

  • Belnap J, Munson SM, Field JP (2011) Aeolian and fluvial processes in dryland regions: the need for integrated studies. Ecohydrology 4:615–622. doi:10.1002/eco.258

    CrossRef  Google Scholar 

  • Belnap J, Phillips SL, Troxler T (2006) Soil lichen and moss cover and species richness can be highly dynamic: the effects of invasion by the annual exotic grass Bromus tectorum, precipitation, and temperature on biological soil crusts in SE Utah. Appl Soil Ecol 32:63–76

    CrossRef  Google Scholar 

  • Belnap J, Prasse R, Harper K (2003) Influence of biological soil crusts on soil environments and vascular plants. In: Belnap J, Lange OL (eds) Biological soil crusts: Structure, function, and management. Springer, Berlin

    CrossRef  Google Scholar 

  • Beraldi-Campesi H, Hartnett HE, Anbar A, Gordon GW, Garcia-Pichel F (2009) Effect of biological soil crusts on soil elemental concentrations: implications for biogeochemistry and as traceable biosignatures of ancient life on land. Geobiology 7:348–359. doi:10.1111/j.1472-4669.2009.00204.x

    CrossRef  CAS  PubMed  Google Scholar 

  • Billings SA, Schaeffer SM, Evans RD (2003) Nitrogen fixation by biological soil crusts and heterotrophic bacteria in an intact Mojave Desert ecosystem with elevated CO2 and added soil carbon. Soil Biol Biochem 35:643–649

    CrossRef  CAS  Google Scholar 

  • Bowker MA, Reed SC, Belnap J, Phillips SL (2002) Temporal variation in community composition, pigmentation, and F-v/F-m of desert cyanobacterial soil crusts. Microb Ecol 43:13–25. doi:10.1007/s00248-001-1013-9

    CrossRef  CAS  PubMed  Google Scholar 

  • Brankatschk R, Fischer T, Veste M, Zeyer J (2013) Succession of N cycling processes in biological soil crusts on a Central European inland dune. FEMS Microbiol Ecol 83:149–160

    CrossRef  CAS  PubMed  Google Scholar 

  • Breen K, Lévesque E (2008) The influence of biological soil crusts on soil characteristics along a high arctic glacier foreland, Nunavut, Canada. Arct Antarct Alp Res 40:287–297. doi:10.1657/1523-0430(06-098)

    CrossRef  Google Scholar 

  • Caputa K, Coxson D, Sanborn P (2013) Seasonal patterns of nitrogen fixation in biological soil crusts from British Columbia’s Chilcotin grasslands. Botany 641:631–641

    CrossRef  CAS  Google Scholar 

  • Castillo-Monroy AP, Maestre FT, Delgado-Baquerizo M, Gallardo A (2010) Biological soil crusts modulate nitrogen availability in semi-arid ecosystems: insights from a Mediterranean grassland. Plant Soil 333:21–34

    CrossRef  CAS  Google Scholar 

  • Chamizo S, Cantón Y, Miralles I, Domingo F (2012) Biological soil crust development affects physicochemical characteristics of soil surface in semiarid ecosystems. Soil Biol Biochem 49:96–105

    CrossRef  CAS  Google Scholar 

  • Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quéré C, Myneni RB, Piao S, Thornton P, France PC, Willem J, Friedlingstein P, Munhoven G (2013) Carbon and other biogeochemical cycles. In: Stocker T, Qin D, Plattner G, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex V, Midgley P (eds) Climate change 2013—the physical science basis. Cambridge University Press, Cambridge, pp 465–570

    Google Scholar 

  • David KAV, Fay P (1977) Effects of long-term treatment with acetylene on nitrogen-fixing microorganisms. Appl Environ Microbiol 34:640–646

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delgado-Baquerizo M, Morillas L, Maestre FT, Gallardo A (2013) Biocrusts control the nitrogen dynamics and microbial functional diversity of semi-arid soils in response to nutrient additions. Plant Soil 372(1–2):643–654

    CrossRef  CAS  Google Scholar 

  • Dickson LG (2000) Constraints to nitrogen fixation by cryptogamic crusts in a polar desert ecosystem, Devon Island, N.W.T., Canada. Arct Antarct Alp Res 32:40–45. doi:10.2307/1552408

    CrossRef  Google Scholar 

  • Drahorad S, Felix-Henningsen P, Eckhardt K-U, Leinweber P (2013) Spatial carbon and nitrogen distribution and organic matter characteristics of biological soil crusts in the Negev desert (Israel) along a rainfall gradient. J Arid Environ 94:18–26

    CrossRef  Google Scholar 

  • Duan Z, Hongland X (2000) Effects of soil properties on ammonia volatilization. Soil Sci Plant Nutr 46:845–852

    CrossRef  Google Scholar 

  • Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, Pöschl U (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci 5:459–462

    CrossRef  CAS  Google Scholar 

  • Eldridge DJ, Zaady E, Shachak M (2000) Infiltration through three contrasting biological soil crusts in patterned landscapes in the Negev, Israel. Catena 40:323–336

    CrossRef  Google Scholar 

  • Eldridge DJ, Zaady E, Shachak M (2002) Microphytic crusts, shrub patches and water harvesting in the Negev Desert: the Shikim system. Landsc Ecol 17:587–597

    CrossRef  Google Scholar 

  • Evans RD, Ehleringer JR (1993) A break in the nitrogen cycle in aridlands—evidence from delta-N-15 of soils. Oecologia 94:314–317. doi:10.1007/BF00317104

    CrossRef  Google Scholar 

  • Evans RD, Johansen JR (1999) Microbiotic crusts and ecosystem processes. Crit Rev Plant Sci 18:183–225

    CrossRef  Google Scholar 

  • Evans RD, Lange OL (2003) Biological soil crusts and ecosystem carbon and nitrogen dynamics. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 263–280

    Google Scholar 

  • Field JP, Breshears DD, Whicker JJ, Zou CB (2011) Interactive effects of grazing and burning on wind- and water-driven sediment fluxes: rangeland management implications. Ecol Appl 21:22–32

    CrossRef  PubMed  Google Scholar 

  • Firestone MK, Davidson EA (1989) Microbiological Basis of NO and N2O Production and Consumption in Soil. In: Schimel MOA, Schimel DS (ed) Exchange of trace gases between terrestrial ecosystems and the atmosphere: report of the Dahlem workshop on Exchange of trace gases between terrestrial ecosystems and the atmosphere, Berlin, Germany, Feb 19–24, 1989. Wiley, Chichester, New York, pp 7–21

    Google Scholar 

  • Garcia-Pichel F, Belnap J (2003) Small-scale environments and distribution of biological soil crusts. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, New York, pp 193–201

    Google Scholar 

  • Green LE, Porras-Alfaro A, Sinsabaugh RL (2008) Translocation of nitrogen and carbon integrates biotic crust and grass production in desert grassland. J Ecol 96:1076–1085

    CrossRef  CAS  Google Scholar 

  • Guo Y, Zhao H, Zuo X, Drake S, Zhao X (2008) Biological soil crust development and its topsoil properties in the process of dune stabilization, Inner Mongolia, China. Environ Geol 54:653–662

    CrossRef  CAS  Google Scholar 

  • Hardy RWF, Holsten RD, Jackson EK, Burns RC (1968) Acetylene-ethylene assay for N2 fixation—laboratory and field evaluation. Plant Physiol 43:1185–1207

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartley AE, Schlesinger WH (2000) Environmental controls on nitric oxide emission from northern Chihuahuan desert soils. Biogeochemistry 50:279–300

    CrossRef  CAS  Google Scholar 

  • Henriksson E (1957) Studies in the physiology of the lichen Collema. 1. The production of extracellular nitrogenous substances by the algal partner under various conditions. Physiol Plant 10:943–948. doi:10.1111/j.1399-3054.1957.tb07637.x

    CrossRef  CAS  Google Scholar 

  • Holst J, Butterbach-Bahl K, Liu C, Zheng X, Kaiser AJ, Schnitzler JP, Zechmeister-Boltenstern S, Brüggemann N (2009) Dinitrogen fixation by biological soil crusts in an inner Mongolian steppe. Biol Fertil Soils 45:679–690. doi:10.1007/s00374-009-0378-7

    CrossRef  CAS  Google Scholar 

  • Hooper DU, Johnson L (1999) Nitrogen limitation in dryland ecosystems: responses to geographical and temporal variation in precipitation. Biogeochemistry 46:247–293. doi:10.1023/A:1006145306009

    CAS  Google Scholar 

  • Housman DC, Powers HH, Collins AD, Belnap J (2006) Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert. J Arid Environ 66:620–634. doi:10.1016/j.jaridenv.2005.11.014

    CrossRef  Google Scholar 

  • Housman DC, Yeager CM, Darby BJ, Sanford RL Jr, Kuske CR, Neher DA, Belnap J (2007) Heterogeneity of soil nutrients and subsurface biota in a dryland ecosystem. Soil Biol Biochem 39:2138–2149

    CrossRef  CAS  Google Scholar 

  • Issa OM, Le Bissonnais Y, Defarge C, Trichet J (2001) Role of a cyanobacterial cover on structural stability of sandy soils in the Sahelian part of western Niger. Geoderma 101:15–30

    CrossRef  Google Scholar 

  • Jeanfils J, Rack JP (1992) Identification and study of growth and nitrogenase activity of nitrogen-fixing cyanobacteria from tropical soil. Vegetatio 103:59–66

    Google Scholar 

  • Jensen BB, Cox RP (1983) Direct measurements of steady-state kinetics of cyanobacterial N-2 uptake by membrane-leak mass-spectrometry and comparisons between nitrogen-fixation and acetylene-reduction. Appl Environ Microbiol 45:1331–1337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson SL, Budinoff CR, Belnap J, Garcia-Pichel F (2005) Relevance of ammonium oxidation within biological soil crust communities. Environ Microbiol 7:1–12

    CrossRef  CAS  PubMed  Google Scholar 

  • Johnson SL, Neuer S, Garcia-Pichel F (2007) Export of nitrogenous compounds due to incomplete cycling within biological soil crusts of arid lands. Enviorn Microbiol 9:680–689

    CrossRef  CAS  Google Scholar 

  • Jones K, Stewart WDP (1969a) Nitrogen turnover in marine and brackish habitats.3. Production of extracellular nitrogen by Calothrix scopulorum. J Mar Biol Assoc UK 49:475–488

    CrossRef  CAS  Google Scholar 

  • Jones K, Stewart WDP (1969b) Nitrogen turnover in marine and brackish habitats.4. Uptake of extracellular products of nitrogen-fixing alga Calothrix scopulorum. J Mar Biol Assoc UK 49:701–716

    CrossRef  CAS  Google Scholar 

  • Kershaw KA (1985) Physiological ecology of lichens. Cambridge University Press, London

    Google Scholar 

  • Kothari A, Potrafka R, Garcia-Pichel F (2012) Diversity in hydrogen evolution from bidirectional hydrogenases in cyanobacteria from terrestrial, freshwater and marine intertidal environments. J Biotechnol 162:105–114. doi:10.1016/j.jbiotec.2012.04.017

    CrossRef  CAS  PubMed  Google Scholar 

  • Lange O, Green T (2003) Photosynthetic performance of a foliose lichen of biological soil-crust communities: long-term monitoring of the CO2 exchange of the Cladonia convolute under temperate habitat conditions. Bibl Lichenol 86:257–280

    Google Scholar 

  • Lange O, Meyer A, Ullmann I, Zellner H (1991) Microklima, Wasserhehalt und Photosynthese von Flechten in der küstennahen Nebelezone der Namib-Wüste: Messungen während der herbstlichen Witterungsperiode. Flora 185:233–266

    Google Scholar 

  • Li XJ, Li XR, Song WM, Gao YP, Zheng JG, Jia RL (2008) Effects of crust and shrub patches on runoff, sedimentation, and related nutrient (C, N) redistribution in the desertified steppe zone of the Tengger Desert, Northern China. Geomorphology 96:221–232

    CrossRef  Google Scholar 

  • Liengen T (1999a) Environmental factors influencing the nitrogen fixation activity of free-living terrestrial cyanobacteria from a high arctic area, Spitsbergen. Can J Microbiol 45:573–581. doi:10.1139/cjm-45-7-573

    CrossRef  CAS  Google Scholar 

  • Liengen T (1999b) Conversion factor between acetylene reduction and nitrogen fixation in free-living cyanobacteria from high arctic habitats. Can J Microbiol 45:223–229

    CrossRef  CAS  Google Scholar 

  • Liu HSJ, Han XG, Li LH, Huang JH, Li X (2009) Grazing density effects on cover, species composition, and nitrogen fixation of biological soil crust in an Inner Mongolia steppe. Rangel Ecol Manag 62:321–327

    CrossRef  Google Scholar 

  • Liu W, Song Y, Wang B, Li J, Shu W (2012) Nitrogen fixation in biotic crusts and vascular plant communities on a copper mine tailings. Eur J Soil Biol 50:15–20

    CrossRef  CAS  Google Scholar 

  • Ludwig JA, Tongway DJ, Freudenberger D, Noble J, Hodgkinson KC (1997) Landscape ecology function and management: principles from Australia’s rangelands. CSIRO Publications, Collingwood

    Google Scholar 

  • Maestre FT, Huesca M, Zaady E, Bautista S, Cortina J (2002) Infiltration, penetration resistance and microphytic crust composition in contrasted microsites within a Mediterranean semi-arid steppe. Soil Biol Biochem 34:895–898

    CrossRef  CAS  Google Scholar 

  • Magee WE, Burris RH (1954) Fixation of N2 and utilization of combined nitrogen by Nostoc muscorum. Am J Bot 41:777–782

    CrossRef  CAS  Google Scholar 

  • Marsh J, Nouvet S, Sanborn P, Coxson D (2006) Composition and function of biological soil crust communities along topographic gradients in grasslands of central interior British Columbia (Chilcotin) and southwestern Yukon (Kluane). Can J Bot 84:717–736. doi:10.1139/b06-026

    CrossRef  Google Scholar 

  • Martin RE, Asner GP, Ansley RJ, Mosier AR (2003) Effects of woody vegetation encroachment on soil nitrogen oxide emissions in a temperate savanna. Ecol Appl 13:897–910

    CrossRef  Google Scholar 

  • Marusenko Y, Bates ST, Anderson I, Johnson SL, Soule T, Garcia-Pichel F (2013) Ammonia-oxidizing archaea and bacteria are structured by geography in biological soil crusts across North American arid lands. Ecol Process 2:9

    CrossRef  Google Scholar 

  • Mayland HF, McIntosh TH (1966) Availability of biologically fixed atmospheric nitrogen-15 to higher plants. Nature 209:421–422

    CrossRef  CAS  Google Scholar 

  • McCalley CK, Sparks JP (2008) Controls over nitric oxide and ammonia emissions from Mojave Desert soils. Oecologia 156:871–881. doi:10.1007/s00442-008-1031-0

    CrossRef  PubMed  Google Scholar 

  • McCalley CK, Sparks JP (2009) Abiotic gas formation drives nitrogen loss from a desert ecosystem. Science 326:837–840. doi:10.1126/science.1178984

    CrossRef  CAS  PubMed  Google Scholar 

  • Millbank JW (1982) The assessment of nitrogen-fixation and throughput by lichens. 3. Losses of nitrogenous compounds by Peltigera membranacea—Peltigera polydactyla—Lobaria pulmonaria in simulated rainfall episodes. New Phytol 92:229–234. doi:10.1111/j.1469-8137.1982.tb03380.x

    CrossRef  Google Scholar 

  • Miralles I, Domingo F, García-Campos E, Trasar-Cepeda C, Leirós MC, Gil-Sotres F (2012) Biological and microbial activity in biological soil crusts from the Tabernas desert, a sub-arid zone in SE Spain. Soil Biol Biochem 55:113–121

    CrossRef  CAS  Google Scholar 

  • Munson SM, Belnap J, Okin GS (2011) Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau. Proc Natl Acad Sci USA 108:3854–3859. doi:10.1073/pnas.1014947108

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Neff JC, Ballantyne AP, Farmer GL, Mahowald NM, Conroy JL, Landry CC, Overpeck JT, Painter TH, Lawrence CR, Reynolds RL (2008) Increasing eolian dust deposition in the western United States linked to human activity. Nat Geosci 1:189–195. doi:10.1038/ngeo133

    CrossRef  CAS  Google Scholar 

  • Nohrstedt HO (1983) Conversion factor between acetylene-reduction and nitrogen fixation in soil—effect of water content and nitrogenase activity. Soil Biol Biochem 15:275–279. doi:10.1016/0038-0717(83)90071-8

    CrossRef  CAS  Google Scholar 

  • Oswald R, Behrendt T, Ermel M, Wu D, Su H, Cheng Y, Breuninger C, Moravek A, Mougin E, Delon C, Loubet B, Pommerening-Röser A, Sörgel M, Pöschl U, Hoffmann T, Andreae MO, Meixner FX, Trebs I (2013) HONO emissions from soil bacteria as a major source of atmospheric reactive nitrogen. Science 341:1233–1235. doi:10.1126/science.1242266

    CrossRef  CAS  PubMed  Google Scholar 

  • Pepe-Ranney C, Koechli C, Potrafka R, Andam C, Eggleston E, Garcia-Pichel F, Buckley DH (2015) Noncyanobacterial diazotrophs mediate dinitrogen fixation in biological soil crusts during early crust formation. ISME J 10:287–298. doi:10.1038/ismej.2015.106

    CrossRef  PubMed  CAS  Google Scholar 

  • Peterjohn WT, Schlesinger WH (1990) Nitrogen loss from deserts in the southwestern United-States. Biogeochemistry 10:67–79

    CrossRef  Google Scholar 

  • Pilegaard K (2013) Processes regulating nitric oxide emissions from soils. Phil Trans R Soc B 368:1–8. doi:10.1098/rstb.2013.0126

    CrossRef  CAS  Google Scholar 

  • Pointing SB, Belnap J (2012) Microbial colonization and controls in dryland systems. Nat Rev Microbiol 10:551–562

    CrossRef  CAS  PubMed  Google Scholar 

  • Ravi S, Breshears DD, Huxman TE, D’Odorico P (2010) Land degradation in drylands: interactions among hydrologic-aeolian erosion and vegetation dynamics. Geomorphology 116:236–245. doi:10.1016/j.geomorph.2009.11.023

    CrossRef  Google Scholar 

  • Ravi S, D’Odorico P, Breshears DD, Field JP, Goudie AS, Huxman TE, Li J, Okin GS, Swap RJ, Thomas AD, Van Pelt S, Whicker JJ, Zobeck TM (2011) Aeolian processes and the biosphere. Rev Geophys 49:RG3001. doi: 10.1029/2010RG000328

    Google Scholar 

  • Rennie R, Rennie D, Fried M (1978) Concepts of 15N usage in dinitrogen fixation studies. Isotopes in biological dinitrogen fixation. FAO IAEA, Division of Atomic Energy in Food and Agriculture, Vienna, pp 107–130

    Google Scholar 

  • Reynolds R, Belnap J, Reheis M, Lamothe P, Luiszer F (2001) Aeolian dust in Colorado Plateau soils: nutrient inputs and recent change in source. Proc Natl Acad Sci USA 98:7123–7127

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  • Rice WA, Paul EA (1971) Acetylene reduction assay for measuring nitrogen fixation in waterlogged soil. Can J Microbiol 17:1049–1056

    CrossRef  CAS  PubMed  Google Scholar 

  • Rogers SL, Burns RG (1994) Changes in aggregate stability, nutrient status, indigenous microbial-populations, and seedling emergence, following inoculation of soil with Nostoc muscorum. Biology and Fertility of Soils 18:209–215

    CrossRef  Google Scholar 

  • Russow R, Veste M, Böhme F (2005) A natural 15N approach to determine the biological fixation of atmospheric nitrogen by biological soil crusts of the Negev Desert. Rapid Commun Mass Spectrom 19:3451–3456. doi:10.1002/rcm.2214

    CrossRef  CAS  PubMed  Google Scholar 

  • Rütting T, Boeckx P, Müller C, Klemedtsson L (2011) Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences 8:1779–1791. doi:10.5194/bg-8-1779-2011

    CrossRef  CAS  Google Scholar 

  • Shearer G, Kohl DH (1988) Natural 15N abundance as a method of estimating the contribution of biologically fixed nitrogen to N2-fixing systems: potential for non-legumes. Plant Soil 110:317–327. doi:10.1007/BF02226812

    CrossRef  CAS  Google Scholar 

  • Silvester WB, Parsons R, Watt PW (1996) Direct measurement of release and assimilation of ammonia in the Gunnera-Nostoc symbiosis. New Phytol 132:617–625

    CrossRef  CAS  Google Scholar 

  • Smith BE, Campbell F, Eady RR, Eldridge M, Ford CM, Hill S, Kavanagh EP, Lowe DJ, Miller RW, Richardson TH, Robson RL, Thorneley RNF, Yates MG (1987) Biochemistry of nitrogenase and the physiology of related metabolism. Philos Trans R Soc Lond Ser B Biol Sci 317:131–146. doi:10.1098/rstb.1987.0052

    CrossRef  CAS  Google Scholar 

  • Spott O, Stange CF (2011) Formation of hybrid N(2)O in a suspended soil due to co-denitrification of NH(2)OH. J Plant Nutr Soil Sci 174:554–567. doi:10.1002/jpln.201000200

    CrossRef  CAS  Google Scholar 

  • Staal M, Te Lintel-Hekkert S, Harren F, Stal L (2001) Nitrogenase activity in cyanobacteria measured by the acetylene reduction assay: a comparison between batch incubation and on-line monitoring. Environ Microbiol 3:343–351. doi:10.1046/j.1462-2920.2001.00201.x

    CrossRef  CAS  PubMed  Google Scholar 

  • Stewart WDP (1967) Transfer of biologically fixed nitrogen in a sand dune slack region. Nature 214:603–604

    CrossRef  Google Scholar 

  • Stewart WDP (1970) Algal fixation of atmospheric nitrogen. Plant Soil 32:555–588. doi:10.1007/BF01372896

    CrossRef  CAS  Google Scholar 

  • Stewart KJ, Coxson D, Grogan P (2011a) Nitrogen inputs by associative cyanobacteria across a low arctic tundra landscape. Arct Antarct Alp Res 43:267–278

    CrossRef  Google Scholar 

  • Stewart KJ, Coxson D, Siciliano SD (2011b) Small-scale spatial patterns in N2-fixation and nutrient availability in an arctic hummock–hollow ecosystem. Soil Biol Biochem 43:133–140

    CrossRef  CAS  Google Scholar 

  • Stewart KJ, Lamb EG, Coxson DS, Siciliano SD (2011c) Bryophyte-cyanobacterial associations as a key factor in N2-fixation across the Canadian Arctic. Plant Soil 344:335–346

    CrossRef  CAS  Google Scholar 

  • Stewart KJ, Brummell ME, Coxson DS, Siciliano SD (2012) How is nitrogen fixation in the high arctic linked to greenhouse gas emissions? Plant Soil 362:215–229

    CrossRef  CAS  Google Scholar 

  • Strauss SL, Day TA, Garcia-pichel F (2012) Nitrogen cycling in desert biological soil crusts across biogeographic regions in the Southwestern United States. Biogeochemistry 108:171–182

    CrossRef  Google Scholar 

  • Su H, Cheng Y, Oswald R, Behrendt T, Trebs I, Meixner FX, Andreae MO, Cheng P, Zhang Y, Pöschl U (2011a) Soil nitrite as a source of atmospheric HONO and OH radicals. Science 333:1616–1618. doi:10.1126/science.1207687

    CrossRef  CAS  PubMed  Google Scholar 

  • Su Y, Zhao X, Li A, Li X, Huang G (2011b) Nitrogen fixation in biological soil crusts from the Tengger desert, northern China. Eur J Soil Biol 47:182–187

    CrossRef  CAS  Google Scholar 

  • Thiet RK, Boerner REJ, Nagy M, Jardine R (2005) The effect of biological soil crusts on throughput of rainwater and N into Lake Michigan sand dune soils. Plant Soil 278:235–251. doi:10.1007/s11104-005-8550-9

    CrossRef  CAS  Google Scholar 

  • Thompson TL, Zaady E, Huancheng P, Wilson TB, Martens DA (2006) Soil C and N pools in patchy shrublands of the Negev and Chihuahuan Deserts. Soil Biol Biochem 38:1943–1955. doi:10.1016/j.soilbio.2006.01.002

    CrossRef  CAS  Google Scholar 

  • Tucker TC, Westerman RL (1989) Gaseous loss of nitrogen from desert region soils. Arid Land Res Manag 3:267–280

    Google Scholar 

  • Veluci RM, Neher DA, Weicht TR (2006) Nitrogen fixation and leaching of biological soil crust communities in mesic temperate soils. Microb Ecol 51:189–196. doi:10.1007/s00248-005-0121-3

    CrossRef  CAS  PubMed  Google Scholar 

  • Weber B, Berkemeier T, Ruckteschler N, Caesar J, Heintz H, Ritter H, Braß H (2015a) Development and calibration of a novel sensor to quantify the water content of surface soils and biological soil crusts. Methods Ecol Evol 7(1):14–22. doi:10.1111/2041-210X.12459

    CrossRef  Google Scholar 

  • Weber B, Wu D, Tamm A, Ruckteschler N, Rodríguez-caballero E (2015b) Biological soil crusts accelerate the nitrogen cycle through large NO and HONO emissions in drylands. Proc Natl Acad Sci 112:15384–153849. doi: 10.1073/pnas.1515818112

    Google Scholar 

  • Williams WJ, Eldridge DJ (2011) Deposition of sand over a cyanobacterial soil crust increases nitrogen bioavailability in a semi-arid woodland. Appl Soil Ecol 49:26–31

    CrossRef  Google Scholar 

  • Wrage N, Velthof GL, Van Beusichem ML, Oenema O (2001) Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol Biochem 33:1723–1732. doi:10.1016/S0038-0717(01)00096-7

    CrossRef  CAS  Google Scholar 

  • Wu N, Zhang YM, Downing A (2009) Comparative study of nitrogenase activity in different types of biological soil crusts in the Gurbantunggut Desert, Northwestern China. J Arid Environ 73:828–833

    CrossRef  Google Scholar 

  • Yair A, Almog R, Veste M (2011) Differential hydrological response of biological topsoil crusts along a rainfall gradient in a sandy arid area: Northern Negev desert, Israel. Catena 87:326–333. doi:10.1016/j.catena.2011.06.015

    CrossRef  Google Scholar 

  • Zaady E, Groffman PM, Standing D, Shachak M (2013) High N2O emissions in dry ecosystems. Eur J Soil Biol 59:1–7

    CrossRef  CAS  Google Scholar 

  • Zhao Y, Xu M, Belnap J (2010) Potential nitrogen fixation activity of different aged biological soil crusts from rehabilitated grasslands of the hilly Loess Plateau, China. J Arid Environ 74:1186–1191

    CrossRef  Google Scholar 

  • Zielke M, Ekker AS, Olsen RA, Spjelkavik S, Solheim B (2002) Errata: the influence of abiotic factors on biological nitrogen fixation in different types of vegetation in the high arctic, Svalbard. Arct Antarct Alp Res 34(3):293

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nichole N. Barger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barger, N.N., Weber, B., Garcia-Pichel, F., Zaady, E., Belnap, J. (2016). Patterns and Controls on Nitrogen Cycling of Biological Soil Crusts. In: Weber, B., Büdel, B., Belnap, J. (eds) Biological Soil Crusts: An Organizing Principle in Drylands. Ecological Studies, vol 226. Springer, Cham. https://doi.org/10.1007/978-3-319-30214-0_14

Download citation