Advertisement

Patterns and Controls on Nitrogen Cycling of Biological Soil Crusts

  • Nichole N. BargerEmail author
  • Bettina Weber
  • Ferran Garcia-Pichel
  • Eli Zaady
  • Jayne Belnap
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 226)

Abstract

In low-nutrient environments with few vascular plant symbiotic N fixers, biocrusts play an important role in ecosystem N cycling. A large number of studies across a wide range of biomes clearly confirm that not only the presence of biocrusts but biocrust community composition strongly influences N-fixation activity, with N fixation increasing with level of development (cyanobacterial-lichen biocrusts > dark cyanobacterial biocrust (e.g., Nostoc spp. and Collema spp.) > light Microcoleus-dominated biocrust). Nitrogen fixation by biocrusts results in N release to the soil in a variety of N forms (inorganic and organic N), thus elevating soil inorganic N pools in the top few millimeters of soil. The influence of N release on the bulk soil at greater soil depths is less clear, with biocrusts either elevating or having no influence on bulk soil inorganic N pools. The fate of N fixed and released by biocrusts, and whether this N is retained in the ecosystem in either soils or plants, determines ecosystem N balance over longer time scales, and results on the influence of biocrusts are mixed. Whereas we have multiple studies that examine a single compartment of N budgets, we lack studies that simultaneously address N inputs, losses, and soil and plant pools, thus precluding the construction of definitive N balances. One of the most consistent impact biocrusts have on ecosystem N is reducing N loss via wind and water erosion, with such losses consistently decreasing with increasing biocrust development.

Keywords

Nitric oxideNitric Oxide Soil Organic Carbon Anaerobic Ammonium Oxidation Denitrification Rate Biological Soil Crust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abed RMM, Lam P, de Beer D, Stief P (2013) High rates of denitrification and nitrous oxide emission in arid biological soil crusts from the Sultanate of Oman. ISME J 7:1862–1875PubMedPubMedCentralCrossRefGoogle Scholar
  2. Allington GRH, Valone TJ (2014) Islands of fertility: a byproduct of grazing? Ecosystems 17:127–141. doi: 10.1007/s10021-013-9711-y CrossRefGoogle Scholar
  3. Aranibar JN, Anderson IC, Ringrose S, Macko SA (2003) Importance of nitrogen fixation in soil crusts of southern African arid ecosystems: acetylene reduction and stable isotope studies. J Arid Environ 54:345–358CrossRefGoogle Scholar
  4. Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Shaeffer SM (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–235PubMedCrossRefGoogle Scholar
  5. Baran R, Brodie EL, Mayberry-lewis J, Hummel E, Nunes U, Rocha D, Chakraborty R, Bowen BP, Karaoz U, Cadillo-quiroz H, Garcia-Pichel F, Northen TR (2015) Soil Bacteria. Nat Commun 6:1–9. doi: 10.1038/ncomms9289 CrossRefGoogle Scholar
  6. Barger NN (2003) Biogeochemical cycling and N dynamics of biological soil crusts in a semi-arid ecosystem. Ph.D. dissertation. Colorado State University, Fort Collins, CO, pp 131Google Scholar
  7. Barger NN, Belnap J, Ojima DS, Mosier A (2005) NO gas loss from biologically crusted soils in canyonlands national park, Utah. Biogeochemistry 75:373–391CrossRefGoogle Scholar
  8. Barger NN, Herrick JE, Van Zee J, Belnap J (2006) Impacts of biological soil crust disturbance and composition on C and N loss from water erosion. Biogeochemistry 77:247–263. doi: 10.1007/s10533-005-1424-7 CrossRefGoogle Scholar
  9. Barger NN, Castle SC, Dean GN (2013) Denitrification from nitrogen-fixing biologically crusted soils in a cool desert environment, southeast Utah, USA. Ecol Process 2:16CrossRefGoogle Scholar
  10. Barr D (1999) Biotic and abiotic regulation of nitrogen dynamics in biological soil crusts. M.S. Thesis. Northern Arizona University, Flagstaff, AZGoogle Scholar
  11. Belnap J (2002a) Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biol Fertil Soils 35:128–135CrossRefGoogle Scholar
  12. Belnap J (2002b) Impacts of off road vehicles on nitrogen cycles in biological soil crusts: resistance in different US deserts. J Arid Environ 52:155–165CrossRefGoogle Scholar
  13. Belnap J (2003) Factors influencing nitrogen fixation and nitrogen release in biological soil crusts. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 241–261CrossRefGoogle Scholar
  14. Belnap J, Lange O (2003) Biological soil crusts: structure, function, and management. Springer, BerlinCrossRefGoogle Scholar
  15. Belnap J, Munson SM, Field JP (2011) Aeolian and fluvial processes in dryland regions: the need for integrated studies. Ecohydrology 4:615–622. doi: 10.1002/eco.258 CrossRefGoogle Scholar
  16. Belnap J, Phillips SL, Troxler T (2006) Soil lichen and moss cover and species richness can be highly dynamic: the effects of invasion by the annual exotic grass Bromus tectorum, precipitation, and temperature on biological soil crusts in SE Utah. Appl Soil Ecol 32:63–76CrossRefGoogle Scholar
  17. Belnap J, Prasse R, Harper K (2003) Influence of biological soil crusts on soil environments and vascular plants. In: Belnap J, Lange OL (eds) Biological soil crusts: Structure, function, and management. Springer, BerlinCrossRefGoogle Scholar
  18. Beraldi-Campesi H, Hartnett HE, Anbar A, Gordon GW, Garcia-Pichel F (2009) Effect of biological soil crusts on soil elemental concentrations: implications for biogeochemistry and as traceable biosignatures of ancient life on land. Geobiology 7:348–359. doi: 10.1111/j.1472-4669.2009.00204.x PubMedCrossRefGoogle Scholar
  19. Billings SA, Schaeffer SM, Evans RD (2003) Nitrogen fixation by biological soil crusts and heterotrophic bacteria in an intact Mojave Desert ecosystem with elevated CO2 and added soil carbon. Soil Biol Biochem 35:643–649CrossRefGoogle Scholar
  20. Bowker MA, Reed SC, Belnap J, Phillips SL (2002) Temporal variation in community composition, pigmentation, and F-v/F-m of desert cyanobacterial soil crusts. Microb Ecol 43:13–25. doi: 10.1007/s00248-001-1013-9 PubMedCrossRefGoogle Scholar
  21. Brankatschk R, Fischer T, Veste M, Zeyer J (2013) Succession of N cycling processes in biological soil crusts on a Central European inland dune. FEMS Microbiol Ecol 83:149–160PubMedCrossRefGoogle Scholar
  22. Breen K, Lévesque E (2008) The influence of biological soil crusts on soil characteristics along a high arctic glacier foreland, Nunavut, Canada. Arct Antarct Alp Res 40:287–297. doi: 10.1657/1523-0430(06-098) CrossRefGoogle Scholar
  23. Caputa K, Coxson D, Sanborn P (2013) Seasonal patterns of nitrogen fixation in biological soil crusts from British Columbia’s Chilcotin grasslands. Botany 641:631–641CrossRefGoogle Scholar
  24. Castillo-Monroy AP, Maestre FT, Delgado-Baquerizo M, Gallardo A (2010) Biological soil crusts modulate nitrogen availability in semi-arid ecosystems: insights from a Mediterranean grassland. Plant Soil 333:21–34CrossRefGoogle Scholar
  25. Chamizo S, Cantón Y, Miralles I, Domingo F (2012) Biological soil crust development affects physicochemical characteristics of soil surface in semiarid ecosystems. Soil Biol Biochem 49:96–105CrossRefGoogle Scholar
  26. Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, Chhabra A, DeFries R, Galloway J, Heimann M, Jones C, Le Quéré C, Myneni RB, Piao S, Thornton P, France PC, Willem J, Friedlingstein P, Munhoven G (2013) Carbon and other biogeochemical cycles. In: Stocker T, Qin D, Plattner G, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex V, Midgley P (eds) Climate change 2013—the physical science basis. Cambridge University Press, Cambridge, pp 465–570Google Scholar
  27. David KAV, Fay P (1977) Effects of long-term treatment with acetylene on nitrogen-fixing microorganisms. Appl Environ Microbiol 34:640–646PubMedPubMedCentralGoogle Scholar
  28. Delgado-Baquerizo M, Morillas L, Maestre FT, Gallardo A (2013) Biocrusts control the nitrogen dynamics and microbial functional diversity of semi-arid soils in response to nutrient additions. Plant Soil 372(1–2):643–654CrossRefGoogle Scholar
  29. Dickson LG (2000) Constraints to nitrogen fixation by cryptogamic crusts in a polar desert ecosystem, Devon Island, N.W.T., Canada. Arct Antarct Alp Res 32:40–45. doi: 10.2307/1552408 CrossRefGoogle Scholar
  30. Drahorad S, Felix-Henningsen P, Eckhardt K-U, Leinweber P (2013) Spatial carbon and nitrogen distribution and organic matter characteristics of biological soil crusts in the Negev desert (Israel) along a rainfall gradient. J Arid Environ 94:18–26CrossRefGoogle Scholar
  31. Duan Z, Hongland X (2000) Effects of soil properties on ammonia volatilization. Soil Sci Plant Nutr 46:845–852CrossRefGoogle Scholar
  32. Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, Pöschl U (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci 5:459–462CrossRefGoogle Scholar
  33. Eldridge DJ, Zaady E, Shachak M (2000) Infiltration through three contrasting biological soil crusts in patterned landscapes in the Negev, Israel. Catena 40:323–336CrossRefGoogle Scholar
  34. Eldridge DJ, Zaady E, Shachak M (2002) Microphytic crusts, shrub patches and water harvesting in the Negev Desert: the Shikim system. Landsc Ecol 17:587–597CrossRefGoogle Scholar
  35. Evans RD, Ehleringer JR (1993) A break in the nitrogen cycle in aridlands—evidence from delta-N-15 of soils. Oecologia 94:314–317. doi: 10.1007/BF00317104 CrossRefGoogle Scholar
  36. Evans RD, Johansen JR (1999) Microbiotic crusts and ecosystem processes. Crit Rev Plant Sci 18:183–225CrossRefGoogle Scholar
  37. Evans RD, Lange OL (2003) Biological soil crusts and ecosystem carbon and nitrogen dynamics. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 263–280Google Scholar
  38. Field JP, Breshears DD, Whicker JJ, Zou CB (2011) Interactive effects of grazing and burning on wind- and water-driven sediment fluxes: rangeland management implications. Ecol Appl 21:22–32PubMedCrossRefGoogle Scholar
  39. Firestone MK, Davidson EA (1989) Microbiological Basis of NO and N2O Production and Consumption in Soil. In: Schimel MOA, Schimel DS (ed) Exchange of trace gases between terrestrial ecosystems and the atmosphere: report of the Dahlem workshop on Exchange of trace gases between terrestrial ecosystems and the atmosphere, Berlin, Germany, Feb 19–24, 1989. Wiley, Chichester, New York, pp 7–21Google Scholar
  40. Garcia-Pichel F, Belnap J (2003) Small-scale environments and distribution of biological soil crusts. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, New York, pp 193–201Google Scholar
  41. Green LE, Porras-Alfaro A, Sinsabaugh RL (2008) Translocation of nitrogen and carbon integrates biotic crust and grass production in desert grassland. J Ecol 96:1076–1085CrossRefGoogle Scholar
  42. Guo Y, Zhao H, Zuo X, Drake S, Zhao X (2008) Biological soil crust development and its topsoil properties in the process of dune stabilization, Inner Mongolia, China. Environ Geol 54:653–662CrossRefGoogle Scholar
  43. Hardy RWF, Holsten RD, Jackson EK, Burns RC (1968) Acetylene-ethylene assay for N2 fixation—laboratory and field evaluation. Plant Physiol 43:1185–1207PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hartley AE, Schlesinger WH (2000) Environmental controls on nitric oxide emission from northern Chihuahuan desert soils. Biogeochemistry 50:279–300CrossRefGoogle Scholar
  45. Henriksson E (1957) Studies in the physiology of the lichen Collema. 1. The production of extracellular nitrogenous substances by the algal partner under various conditions. Physiol Plant 10:943–948. doi: 10.1111/j.1399-3054.1957.tb07637.x CrossRefGoogle Scholar
  46. Holst J, Butterbach-Bahl K, Liu C, Zheng X, Kaiser AJ, Schnitzler JP, Zechmeister-Boltenstern S, Brüggemann N (2009) Dinitrogen fixation by biological soil crusts in an inner Mongolian steppe. Biol Fertil Soils 45:679–690. doi: 10.1007/s00374-009-0378-7 CrossRefGoogle Scholar
  47. Hooper DU, Johnson L (1999) Nitrogen limitation in dryland ecosystems: responses to geographical and temporal variation in precipitation. Biogeochemistry 46:247–293. doi: 10.1023/A:1006145306009 Google Scholar
  48. Housman DC, Powers HH, Collins AD, Belnap J (2006) Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert. J Arid Environ 66:620–634. doi: 10.1016/j.jaridenv.2005.11.014 CrossRefGoogle Scholar
  49. Housman DC, Yeager CM, Darby BJ, Sanford RL Jr, Kuske CR, Neher DA, Belnap J (2007) Heterogeneity of soil nutrients and subsurface biota in a dryland ecosystem. Soil Biol Biochem 39:2138–2149CrossRefGoogle Scholar
  50. Issa OM, Le Bissonnais Y, Defarge C, Trichet J (2001) Role of a cyanobacterial cover on structural stability of sandy soils in the Sahelian part of western Niger. Geoderma 101:15–30CrossRefGoogle Scholar
  51. Jeanfils J, Rack JP (1992) Identification and study of growth and nitrogenase activity of nitrogen-fixing cyanobacteria from tropical soil. Vegetatio 103:59–66Google Scholar
  52. Jensen BB, Cox RP (1983) Direct measurements of steady-state kinetics of cyanobacterial N-2 uptake by membrane-leak mass-spectrometry and comparisons between nitrogen-fixation and acetylene-reduction. Appl Environ Microbiol 45:1331–1337PubMedPubMedCentralGoogle Scholar
  53. Johnson SL, Budinoff CR, Belnap J, Garcia-Pichel F (2005) Relevance of ammonium oxidation within biological soil crust communities. Environ Microbiol 7:1–12PubMedCrossRefGoogle Scholar
  54. Johnson SL, Neuer S, Garcia-Pichel F (2007) Export of nitrogenous compounds due to incomplete cycling within biological soil crusts of arid lands. Enviorn Microbiol 9:680–689CrossRefGoogle Scholar
  55. Jones K, Stewart WDP (1969a) Nitrogen turnover in marine and brackish habitats.3. Production of extracellular nitrogen by Calothrix scopulorum. J Mar Biol Assoc UK 49:475–488CrossRefGoogle Scholar
  56. Jones K, Stewart WDP (1969b) Nitrogen turnover in marine and brackish habitats.4. Uptake of extracellular products of nitrogen-fixing alga Calothrix scopulorum. J Mar Biol Assoc UK 49:701–716CrossRefGoogle Scholar
  57. Kershaw KA (1985) Physiological ecology of lichens. Cambridge University Press, LondonGoogle Scholar
  58. Kothari A, Potrafka R, Garcia-Pichel F (2012) Diversity in hydrogen evolution from bidirectional hydrogenases in cyanobacteria from terrestrial, freshwater and marine intertidal environments. J Biotechnol 162:105–114. doi: 10.1016/j.jbiotec.2012.04.017 PubMedCrossRefGoogle Scholar
  59. Lange O, Green T (2003) Photosynthetic performance of a foliose lichen of biological soil-crust communities: long-term monitoring of the CO2 exchange of the Cladonia convolute under temperate habitat conditions. Bibl Lichenol 86:257–280Google Scholar
  60. Lange O, Meyer A, Ullmann I, Zellner H (1991) Microklima, Wasserhehalt und Photosynthese von Flechten in der küstennahen Nebelezone der Namib-Wüste: Messungen während der herbstlichen Witterungsperiode. Flora 185:233–266Google Scholar
  61. Li XJ, Li XR, Song WM, Gao YP, Zheng JG, Jia RL (2008) Effects of crust and shrub patches on runoff, sedimentation, and related nutrient (C, N) redistribution in the desertified steppe zone of the Tengger Desert, Northern China. Geomorphology 96:221–232CrossRefGoogle Scholar
  62. Liengen T (1999a) Environmental factors influencing the nitrogen fixation activity of free-living terrestrial cyanobacteria from a high arctic area, Spitsbergen. Can J Microbiol 45:573–581. doi: 10.1139/cjm-45-7-573 CrossRefGoogle Scholar
  63. Liengen T (1999b) Conversion factor between acetylene reduction and nitrogen fixation in free-living cyanobacteria from high arctic habitats. Can J Microbiol 45:223–229CrossRefGoogle Scholar
  64. Liu HSJ, Han XG, Li LH, Huang JH, Li X (2009) Grazing density effects on cover, species composition, and nitrogen fixation of biological soil crust in an Inner Mongolia steppe. Rangel Ecol Manag 62:321–327CrossRefGoogle Scholar
  65. Liu W, Song Y, Wang B, Li J, Shu W (2012) Nitrogen fixation in biotic crusts and vascular plant communities on a copper mine tailings. Eur J Soil Biol 50:15–20CrossRefGoogle Scholar
  66. Ludwig JA, Tongway DJ, Freudenberger D, Noble J, Hodgkinson KC (1997) Landscape ecology function and management: principles from Australia’s rangelands. CSIRO Publications, CollingwoodGoogle Scholar
  67. Maestre FT, Huesca M, Zaady E, Bautista S, Cortina J (2002) Infiltration, penetration resistance and microphytic crust composition in contrasted microsites within a Mediterranean semi-arid steppe. Soil Biol Biochem 34:895–898CrossRefGoogle Scholar
  68. Magee WE, Burris RH (1954) Fixation of N2 and utilization of combined nitrogen by Nostoc muscorum. Am J Bot 41:777–782CrossRefGoogle Scholar
  69. Marsh J, Nouvet S, Sanborn P, Coxson D (2006) Composition and function of biological soil crust communities along topographic gradients in grasslands of central interior British Columbia (Chilcotin) and southwestern Yukon (Kluane). Can J Bot 84:717–736. doi: 10.1139/b06-026 CrossRefGoogle Scholar
  70. Martin RE, Asner GP, Ansley RJ, Mosier AR (2003) Effects of woody vegetation encroachment on soil nitrogen oxide emissions in a temperate savanna. Ecol Appl 13:897–910CrossRefGoogle Scholar
  71. Marusenko Y, Bates ST, Anderson I, Johnson SL, Soule T, Garcia-Pichel F (2013) Ammonia-oxidizing archaea and bacteria are structured by geography in biological soil crusts across North American arid lands. Ecol Process 2:9CrossRefGoogle Scholar
  72. Mayland HF, McIntosh TH (1966) Availability of biologically fixed atmospheric nitrogen-15 to higher plants. Nature 209:421–422CrossRefGoogle Scholar
  73. McCalley CK, Sparks JP (2008) Controls over nitric oxide and ammonia emissions from Mojave Desert soils. Oecologia 156:871–881. doi: 10.1007/s00442-008-1031-0 PubMedCrossRefGoogle Scholar
  74. McCalley CK, Sparks JP (2009) Abiotic gas formation drives nitrogen loss from a desert ecosystem. Science 326:837–840. doi: 10.1126/science.1178984 PubMedCrossRefGoogle Scholar
  75. Millbank JW (1982) The assessment of nitrogen-fixation and throughput by lichens. 3. Losses of nitrogenous compounds by Peltigera membranacea—Peltigera polydactyla—Lobaria pulmonaria in simulated rainfall episodes. New Phytol 92:229–234. doi: 10.1111/j.1469-8137.1982.tb03380.x CrossRefGoogle Scholar
  76. Miralles I, Domingo F, García-Campos E, Trasar-Cepeda C, Leirós MC, Gil-Sotres F (2012) Biological and microbial activity in biological soil crusts from the Tabernas desert, a sub-arid zone in SE Spain. Soil Biol Biochem 55:113–121CrossRefGoogle Scholar
  77. Munson SM, Belnap J, Okin GS (2011) Responses of wind erosion to climate-induced vegetation changes on the Colorado Plateau. Proc Natl Acad Sci USA 108:3854–3859. doi: 10.1073/pnas.1014947108 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Neff JC, Ballantyne AP, Farmer GL, Mahowald NM, Conroy JL, Landry CC, Overpeck JT, Painter TH, Lawrence CR, Reynolds RL (2008) Increasing eolian dust deposition in the western United States linked to human activity. Nat Geosci 1:189–195. doi: 10.1038/ngeo133 CrossRefGoogle Scholar
  79. Nohrstedt HO (1983) Conversion factor between acetylene-reduction and nitrogen fixation in soil—effect of water content and nitrogenase activity. Soil Biol Biochem 15:275–279. doi: 10.1016/0038-0717(83)90071-8 CrossRefGoogle Scholar
  80. Oswald R, Behrendt T, Ermel M, Wu D, Su H, Cheng Y, Breuninger C, Moravek A, Mougin E, Delon C, Loubet B, Pommerening-Röser A, Sörgel M, Pöschl U, Hoffmann T, Andreae MO, Meixner FX, Trebs I (2013) HONO emissions from soil bacteria as a major source of atmospheric reactive nitrogen. Science 341:1233–1235. doi: 10.1126/science.1242266 PubMedCrossRefGoogle Scholar
  81. Pepe-Ranney C, Koechli C, Potrafka R, Andam C, Eggleston E, Garcia-Pichel F, Buckley DH (2015) Noncyanobacterial diazotrophs mediate dinitrogen fixation in biological soil crusts during early crust formation. ISME J 10:287–298. doi: 10.1038/ismej.2015.106 PubMedCrossRefGoogle Scholar
  82. Peterjohn WT, Schlesinger WH (1990) Nitrogen loss from deserts in the southwestern United-States. Biogeochemistry 10:67–79CrossRefGoogle Scholar
  83. Pilegaard K (2013) Processes regulating nitric oxide emissions from soils. Phil Trans R Soc B 368:1–8. doi: 10.1098/rstb.2013.0126 CrossRefGoogle Scholar
  84. Pointing SB, Belnap J (2012) Microbial colonization and controls in dryland systems. Nat Rev Microbiol 10:551–562PubMedCrossRefGoogle Scholar
  85. Ravi S, Breshears DD, Huxman TE, D’Odorico P (2010) Land degradation in drylands: interactions among hydrologic-aeolian erosion and vegetation dynamics. Geomorphology 116:236–245. doi: 10.1016/j.geomorph.2009.11.023 CrossRefGoogle Scholar
  86. Ravi S, D’Odorico P, Breshears DD, Field JP, Goudie AS, Huxman TE, Li J, Okin GS, Swap RJ, Thomas AD, Van Pelt S, Whicker JJ, Zobeck TM (2011) Aeolian processes and the biosphere. Rev Geophys 49:RG3001. doi: 10.1029/2010RG000328Google Scholar
  87. Rennie R, Rennie D, Fried M (1978) Concepts of 15N usage in dinitrogen fixation studies. Isotopes in biological dinitrogen fixation. FAO IAEA, Division of Atomic Energy in Food and Agriculture, Vienna, pp 107–130Google Scholar
  88. Reynolds R, Belnap J, Reheis M, Lamothe P, Luiszer F (2001) Aeolian dust in Colorado Plateau soils: nutrient inputs and recent change in source. Proc Natl Acad Sci USA 98:7123–7127PubMedPubMedCentralCrossRefGoogle Scholar
  89. Rice WA, Paul EA (1971) Acetylene reduction assay for measuring nitrogen fixation in waterlogged soil. Can J Microbiol 17:1049–1056PubMedCrossRefGoogle Scholar
  90. Rogers SL, Burns RG (1994) Changes in aggregate stability, nutrient status, indigenous microbial-populations, and seedling emergence, following inoculation of soil with Nostoc muscorum. Biology and Fertility of Soils 18:209–215CrossRefGoogle Scholar
  91. Russow R, Veste M, Böhme F (2005) A natural 15N approach to determine the biological fixation of atmospheric nitrogen by biological soil crusts of the Negev Desert. Rapid Commun Mass Spectrom 19:3451–3456. doi: 10.1002/rcm.2214 PubMedCrossRefGoogle Scholar
  92. Rütting T, Boeckx P, Müller C, Klemedtsson L (2011) Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences 8:1779–1791. doi: 10.5194/bg-8-1779-2011 CrossRefGoogle Scholar
  93. Shearer G, Kohl DH (1988) Natural 15N abundance as a method of estimating the contribution of biologically fixed nitrogen to N2-fixing systems: potential for non-legumes. Plant Soil 110:317–327. doi: 10.1007/BF02226812 CrossRefGoogle Scholar
  94. Silvester WB, Parsons R, Watt PW (1996) Direct measurement of release and assimilation of ammonia in the Gunnera-Nostoc symbiosis. New Phytol 132:617–625CrossRefGoogle Scholar
  95. Smith BE, Campbell F, Eady RR, Eldridge M, Ford CM, Hill S, Kavanagh EP, Lowe DJ, Miller RW, Richardson TH, Robson RL, Thorneley RNF, Yates MG (1987) Biochemistry of nitrogenase and the physiology of related metabolism. Philos Trans R Soc Lond Ser B Biol Sci 317:131–146. doi: 10.1098/rstb.1987.0052 CrossRefGoogle Scholar
  96. Spott O, Stange CF (2011) Formation of hybrid N(2)O in a suspended soil due to co-denitrification of NH(2)OH. J Plant Nutr Soil Sci 174:554–567. doi: 10.1002/jpln.201000200 CrossRefGoogle Scholar
  97. Staal M, Te Lintel-Hekkert S, Harren F, Stal L (2001) Nitrogenase activity in cyanobacteria measured by the acetylene reduction assay: a comparison between batch incubation and on-line monitoring. Environ Microbiol 3:343–351. doi: 10.1046/j.1462-2920.2001.00201.x PubMedCrossRefGoogle Scholar
  98. Stewart WDP (1967) Transfer of biologically fixed nitrogen in a sand dune slack region. Nature 214:603–604CrossRefGoogle Scholar
  99. Stewart WDP (1970) Algal fixation of atmospheric nitrogen. Plant Soil 32:555–588. doi: 10.1007/BF01372896 CrossRefGoogle Scholar
  100. Stewart KJ, Coxson D, Grogan P (2011a) Nitrogen inputs by associative cyanobacteria across a low arctic tundra landscape. Arct Antarct Alp Res 43:267–278CrossRefGoogle Scholar
  101. Stewart KJ, Coxson D, Siciliano SD (2011b) Small-scale spatial patterns in N2-fixation and nutrient availability in an arctic hummock–hollow ecosystem. Soil Biol Biochem 43:133–140CrossRefGoogle Scholar
  102. Stewart KJ, Lamb EG, Coxson DS, Siciliano SD (2011c) Bryophyte-cyanobacterial associations as a key factor in N2-fixation across the Canadian Arctic. Plant Soil 344:335–346CrossRefGoogle Scholar
  103. Stewart KJ, Brummell ME, Coxson DS, Siciliano SD (2012) How is nitrogen fixation in the high arctic linked to greenhouse gas emissions? Plant Soil 362:215–229CrossRefGoogle Scholar
  104. Strauss SL, Day TA, Garcia-pichel F (2012) Nitrogen cycling in desert biological soil crusts across biogeographic regions in the Southwestern United States. Biogeochemistry 108:171–182CrossRefGoogle Scholar
  105. Su H, Cheng Y, Oswald R, Behrendt T, Trebs I, Meixner FX, Andreae MO, Cheng P, Zhang Y, Pöschl U (2011a) Soil nitrite as a source of atmospheric HONO and OH radicals. Science 333:1616–1618. doi: 10.1126/science.1207687 PubMedCrossRefGoogle Scholar
  106. Su Y, Zhao X, Li A, Li X, Huang G (2011b) Nitrogen fixation in biological soil crusts from the Tengger desert, northern China. Eur J Soil Biol 47:182–187CrossRefGoogle Scholar
  107. Thiet RK, Boerner REJ, Nagy M, Jardine R (2005) The effect of biological soil crusts on throughput of rainwater and N into Lake Michigan sand dune soils. Plant Soil 278:235–251. doi: 10.1007/s11104-005-8550-9 CrossRefGoogle Scholar
  108. Thompson TL, Zaady E, Huancheng P, Wilson TB, Martens DA (2006) Soil C and N pools in patchy shrublands of the Negev and Chihuahuan Deserts. Soil Biol Biochem 38:1943–1955. doi: 10.1016/j.soilbio.2006.01.002 CrossRefGoogle Scholar
  109. Tucker TC, Westerman RL (1989) Gaseous loss of nitrogen from desert region soils. Arid Land Res Manag 3:267–280Google Scholar
  110. Veluci RM, Neher DA, Weicht TR (2006) Nitrogen fixation and leaching of biological soil crust communities in mesic temperate soils. Microb Ecol 51:189–196. doi: 10.1007/s00248-005-0121-3 PubMedCrossRefGoogle Scholar
  111. Weber B, Berkemeier T, Ruckteschler N, Caesar J, Heintz H, Ritter H, Braß H (2015a) Development and calibration of a novel sensor to quantify the water content of surface soils and biological soil crusts. Methods Ecol Evol 7(1):14–22. doi: 10.1111/2041-210X.12459 CrossRefGoogle Scholar
  112. Weber B, Wu D, Tamm A, Ruckteschler N, Rodríguez-caballero E (2015b) Biological soil crusts accelerate the nitrogen cycle through large NO and HONO emissions in drylands. Proc Natl Acad Sci 112:15384–153849. doi: 10.1073/pnas.1515818112Google Scholar
  113. Williams WJ, Eldridge DJ (2011) Deposition of sand over a cyanobacterial soil crust increases nitrogen bioavailability in a semi-arid woodland. Appl Soil Ecol 49:26–31CrossRefGoogle Scholar
  114. Wrage N, Velthof GL, Van Beusichem ML, Oenema O (2001) Role of nitrifier denitrification in the production of nitrous oxide. Soil Biol Biochem 33:1723–1732. doi: 10.1016/S0038-0717(01)00096-7 CrossRefGoogle Scholar
  115. Wu N, Zhang YM, Downing A (2009) Comparative study of nitrogenase activity in different types of biological soil crusts in the Gurbantunggut Desert, Northwestern China. J Arid Environ 73:828–833CrossRefGoogle Scholar
  116. Yair A, Almog R, Veste M (2011) Differential hydrological response of biological topsoil crusts along a rainfall gradient in a sandy arid area: Northern Negev desert, Israel. Catena 87:326–333. doi: 10.1016/j.catena.2011.06.015 CrossRefGoogle Scholar
  117. Zaady E, Groffman PM, Standing D, Shachak M (2013) High N2O emissions in dry ecosystems. Eur J Soil Biol 59:1–7CrossRefGoogle Scholar
  118. Zhao Y, Xu M, Belnap J (2010) Potential nitrogen fixation activity of different aged biological soil crusts from rehabilitated grasslands of the hilly Loess Plateau, China. J Arid Environ 74:1186–1191CrossRefGoogle Scholar
  119. Zielke M, Ekker AS, Olsen RA, Spjelkavik S, Solheim B (2002) Errata: the influence of abiotic factors on biological nitrogen fixation in different types of vegetation in the high arctic, Svalbard. Arct Antarct Alp Res 34(3):293CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Nichole N. Barger
    • 1
    Email author
  • Bettina Weber
    • 2
  • Ferran Garcia-Pichel
    • 3
  • Eli Zaady
    • 4
  • Jayne Belnap
    • 5
  1. 1.Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderUSA
  2. 2.Multiphase ChemistryMax Planck Institute for ChemistryMainzGermany
  3. 3.School of Life SciencesArizona State UniversityTempeUSA
  4. 4.Department of Natural Resources, Agricultural Research OrganizationInstitute of Plant Sciences, Gilat Research CenterNegevIsrael
  5. 5.U.S. Geological SurveySouthwest Biological Science StationMoabUSA

Personalised recommendations