Advertisement

Microstructure and Weathering Processes Within Biological Soil Crusts

  • Ferran Garcia-PichelEmail author
  • Vincent John Martin Noah Linus Felde
  • Sylvie Laureen Drahorad
  • Bettina Weber
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 226)

Abstract

Biological soil crusts (biocrusts) are organo-sedimentary systems in which both the organic and the inorganic mineral components play dynamic roles in determining the architecture and evolution of the system, as they interact between themselves and with the physical environment. We review critically advances in the description of the microstructure of biocrusts with respect to their abiotic and biological components, as well as the interactions between the two in time and space that result in important properties of environmental relevance. We pay special attention to the processes of crust biological and physical succession and to mineral weathering processes.

Keywords

Soil Crust Biological Soil Crust Tengger Desert Moss Crust Cyanobacterial Crust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Amézketa E (1999) Soil aggregate stability: a review. J Sustain Agr 14(2–3):83–151. doi: 10.1300/J064v14n02_08 CrossRefGoogle Scholar
  2. Bachmann E (1904) Die Beziehungen der Kieselflechten zu ihrem Substrat. Ber Deut Bot Ges 22:101–104Google Scholar
  3. Bachmann E (1913) Die Beziehungen der Kalkflechten zu ihrem Substrat. Ber Deut Bot Ges 31:3–12Google Scholar
  4. Badorreck A, Gerke HH, Hüttl RF (2013) Morphology of physical soil crusts and infiltration patterns in an artificial catchment. Soil Tillage Res 129:1–8. doi: 10.1016/j.still.2013.01.001 CrossRefGoogle Scholar
  5. Bates ST, Garcia-Pichel F (2009) A culture-independent study of free-living fungi in biological soil crusts of the Colorado Plateau: their diversity and relative contribution to microbial biomass. Environ Microbiol 11:56–67CrossRefPubMedGoogle Scholar
  6. Bates ST, Nash TH, Sweat KG, Garcia-Pichel F (2010) Fungal communities of lichen-dominated biological soil crusts: diversity, relative microbial biomass, and their relationship to disturbance and crust cover. J Arid Environ 74:1192–1199CrossRefGoogle Scholar
  7. Baran R, Brodie EL, Mayberry-Lewis J, Nunes Da Rocha U, Bowen BP, Karaoz U, Cadillo-Quiroz H, Garcia-Pichel F, Northen TR (2015) Exometabolite niche partitioning among sympatric soil bacteria. Nat Commun 6:8289. doi: 10.1038/ncomms9289 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bell RA, Athey PV, Sommerfeld MR (1986) Cryptoendolithic algal communities of the Colorado Plateau. J Phycol 22:429–435CrossRefGoogle Scholar
  9. Beraldi H, Garcia-Pichel F (2010) Biogenicity of roll-up structures and their potential as biosignatures of ancient life on land. Geobiology 9(1):10–23CrossRefGoogle Scholar
  10. Beraldi-Campesi H, Hartnett H, Anbar A, Gordon G, Garcia-Pichel F (2009) Effects of biological soil crusts on soil elemental concentrations; implications for biogeochemistry and as traceable biosignatures of ancient life on land. Geobiology 7:348–359CrossRefPubMedGoogle Scholar
  11. Beraldi-Campesi H, Farmer J, Garcia-Pichel F (2014) Modern terrestrial sedimentary biostructures and their fossil analogs in mesoproterozoic subaerial deposits. PALAIOS 29(2):45–54. doi: 10.2110/palo.2013.084 CrossRefGoogle Scholar
  12. Bowker MA, Belnap J, Davidson DW, Goldstein H (2006) Correlates of biological soil crust distribution across a continuum of spatial scales: support for a hierarchical conceptual model. J Appl Ecol 43:152–163CrossRefGoogle Scholar
  13. Bronick CJ, Lal R (2005) Soil structure and management: a review. Geoderma 124(1–2):3–22. doi: 10.1016/j.geoderma.2004.03.005 CrossRefGoogle Scholar
  14. Büdel B, Weber B, Kühl M, Pfanz H, Sültemeyer D, Wessels D (2004) Reshaping of sandstone surfaces by cryptoendolithic cyanobacteria: bioalkalization causes chemical weathering in arid landscapes. Geobiology 2:261–268CrossRefGoogle Scholar
  15. Callebaut F, Gabriels D, Minjauw W, De Boodt M (1985) Determination of soil surface strength with a needle-type penetrometer. Soil Tillage Res 5:227–245. doi: 10.1016/0167-1987(85)90017-0 CrossRefGoogle Scholar
  16. Chen J, Blume H-P, Beyer L (2000) Weathering of rocks induced by lichen colonization—a review. Catena 39:121–146CrossRefGoogle Scholar
  17. Chen R, Zhang Y, Li Y, Wei W, Zhang J, Wu N (2009) The variation of morphological features and mineralogical components of biological soil crusts in the Gurbantunggut Desert of Northwestern China. Environ Geol 57:1135–114CrossRefGoogle Scholar
  18. Couradeau E, Karaoz U, HsiaoChien L, Nunes da Rocha U, Northen T, Brodie E, Garcia-Pichel F (2016) Bacteria increase arid land soil surface temperature through the production of sunscreens. Nat Commun 7:10373. doi: 10.1038/ncomms10373 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Danin A, Gerson R, Garty J (1983) Weathering patterns on hard limestone and dolomite by endolithic lichens and cyanobacteria: supporting evidence for eolian contribution to Terra Rossa soil. Soil Sci 136(4):213–217CrossRefGoogle Scholar
  20. de los Rios A, Wierzchos J, Sancho LG, Ascaso C (2003) Acid microenvironments in microbial biofilms of Antarctic endolithic microecosystems. Environ Microbiol 5(4):231–237CrossRefPubMedGoogle Scholar
  21. de los Rios A, Grube M, Sancho LG, Ascaso C (2007) Ultrastructural and genetic characteristics of endolithic cyanobacterial biofilms colonizing Antarctic granite rocks. FEMS Microbiol Ecol 59:386–395CrossRefPubMedGoogle Scholar
  22. Dietze M, Bartel S, Lindner M, Kleber A (2012) Formation mechanisms and control factors of vesicular soil structure. Catena 99:83–96. doi: 10.1016/j.catena.2012.06.011 CrossRefGoogle Scholar
  23. Drahorad SL, Felix-Henningsen P (2013) Application of an electronic micropenetrometer to assess mechanical stability of biological soil crusts. J Plant Nutr Soil Sci 6:904–909. doi: 10.1002/jpln.201200291 CrossRefGoogle Scholar
  24. Drahorad SL, Steckenmesser D, Felix-Henningsen P, Lichner L, Rodný M (2013) Ongoing succession of biological soil crusts increases water repellency—a case study on Arenosols in Sekule, Slovakia. Biologia 68(6):1089–1093. doi: 10.2478/s11756-013-0247-6 CrossRefGoogle Scholar
  25. Eichler H (1981) Kleinformen der hocharktischen Verwitterung im Bereich der Oobloyah Bay, N.-Ellsmere Island, N.W.T., Kanada-Formengenese und Prozesse. Heidelberger Geogr Arbeiten 69:465–486Google Scholar
  26. Elliott DR, Thomas AD, Hoon SR, Sen R (2014) Niche partitioning of bacterial communities in biological crusts and soils under grasses, shrubs and trees in the Kalahari. Biodivers Conserv 23:1709–1733CrossRefGoogle Scholar
  27. Felde VJMNL, Peth S, Uteau-Puschmann D, Drahorad S, Felix-Henningsen P (2014) Soil microstructure as an under-explored feature of biological soil crust hydrological properties: case study from the NW Negev Desert. Biodivers Conserv 23(7):1687–1708. doi: 10.1007/s10531-014-0693-7 CrossRefGoogle Scholar
  28. Fischer T, Veste M, Schaaf W, Düming A, Kögel-Knabner I, Wiehe W, Bens O, Hüttl RF (2010) Initial pedogenesis in a topsoil crust 3 years after construction of an artificial catchment in Brandenburg, NE Germany. Biogeochemistry 101:165–176. doi: 10.1007/s10533-010-9464-z CrossRefGoogle Scholar
  29. Friedmann EI (1982) Endolithic organisms in the antarctic cold desert. Science 215:1045–1053CrossRefPubMedGoogle Scholar
  30. Friedmann I, Lipkin Y, Ocampo-Paus R (1967) Desert algae of the Negev (Israel). Phycologia 6(4):185–200CrossRefGoogle Scholar
  31. Friedmann EI, Hua M, Ocampo-Friedmann R (1988) Cryptoendolithic lichen and cyanobacterial communities of the Ross Desert, Antarctica. Polarforschung 58(2/3):251–259PubMedGoogle Scholar
  32. Garcia-Pichel F (1995) A scalar irradiance microprobe for the measurement of UV radiation at high spatial resolution. Photochem Photobiol 61:248–254CrossRefGoogle Scholar
  33. Garcia-Pichel F (2002) Desert environments: biological soil crusts. In: Bitton G (ed) Encyclopedia of environmental microbiology. Wiley, New York, pp 1019–1023Google Scholar
  34. Garcia-Pichel F (2006) Plausible mechanisms for the boring on carbonates by microbial phototrophs. Sediment Geol 185:205–213CrossRefGoogle Scholar
  35. Garcia-Pichel F, Belnap J (1996) Microenvironments and microscale productivity of cyanobacterial desert crusts. J Phycol 32:774–782CrossRefGoogle Scholar
  36. Garcia-Pichel F, Pringault O (2001) Cyanobacteria track water in desert soils. Nature 413:380–381CrossRefPubMedGoogle Scholar
  37. Garcia-Pichel F, Wojciechowski MF (2009) The evolution of a capacity to build supra-cellular ropes enabled filamentous cyanobacteria to colonize highly erodible substrates. PLoS One 4(11):e7801CrossRefPubMedPubMedCentralGoogle Scholar
  38. Garcia-Pichel F, Johnson SL, Youngkin D, Belnap J (2003) Small-scale vertical distribution of bacterial biomass and diversity in biological soil crusts from arid lands in the Colorado Plateau. Microb Ecol 46:312–321CrossRefPubMedGoogle Scholar
  39. Garcia-Pichel F, López-Cortés A, Nübel U (2001) Phylogenetic and morphological diversity of cyanobacteria in soil desert crusts from the Colorado Plateau. Appl Environ Microbiol 67:1902–1910CrossRefPubMedPubMedCentralGoogle Scholar
  40. Garcia-Pichel F, Ramírez-Reinat E, Gao Q (2010) Microbial excavation of solid carbonates powered by P-type ATPase-mediated transcellular Ca2+ transport. PNAS 107(50):21749–21754CrossRefPubMedPubMedCentralGoogle Scholar
  41. George DB, Davidson DW, Schleip KC, Patrell-Kim LJ (2000) Microtopography of microbiotic crusts on the Colorado Plateau, and the distribution of component organisms. West N Am Nat 60:343–354Google Scholar
  42. Golubić S, Krumbein W, Schneider J (1979) The carbon cycle. In: Trudinger PA, Swaine DJ (eds) Biogeochemical cycling of mineral-forming elements. Elsevier Scientific, Amsterdam, pp 29–45CrossRefGoogle Scholar
  43. Guo Y-R, Zhao H-L, Zuo X, Drake S, Zhao X (2008) Biological soil crust development and its topsoil properties in the process of dune stabilization, Inner Mongolia, China. Environ Geol 54:653–662CrossRefGoogle Scholar
  44. Hillel D, Warrick AW, Baker RS, Rosenzweig C (1998) Environmental soil physics. Academic, San Diego, CAGoogle Scholar
  45. Hu C, Zhang D, Huang Z, Liu Y (2003) The vertical microdistribution of cyanobacteria and green algae within desert crusts and the development of the algal crusts. Plant Soil 257:97–111CrossRefGoogle Scholar
  46. Jimenez Aguilar A, Huber-Sannwald E, Belnap J, Smart DR, Arredondo Moreno JT (2009) Biological soil crusts exhibit a dynamic response to seasonal rain and release from grazing with implications for soil stability. J Arid Environ 73:1158–1169CrossRefGoogle Scholar
  47. Johnson SL, Budinoff CR, Belnap J, Garcia-Pichel F (2005) Relevance of ammonium oxidation in biological soil crust communities. Environ Microbiol 7:1–12CrossRefPubMedGoogle Scholar
  48. Johnson SL, Neuer S, Garcia-Pichel F (2007) Export of nitrogenous compounds due to incomplete cycling within biological soil crusts of arid lands. Environ Microbiol 9:680–689CrossRefPubMedGoogle Scholar
  49. Lan S, Wu L, Zhang D, Hu C (2012) Successional stages of biological soil crusts and their microstructure variability in Shapotou region (China). Environ Earth Sci 65:77–88CrossRefGoogle Scholar
  50. Maestre FT, Huesca M, Zaady E, Bautista S, Cortina J (2002) Infiltration, penetration resistance and microphytic crust composition in contrasted microsites within a Mediterranean semi-arid steppe. Soil Biol Biochem 34(6):895–898. doi: 10.1016/S0038-0717(02)00021-4 CrossRefGoogle Scholar
  51. Mager DM (2010) Carbohydrates in cyanobacterial soil crusts as a source of carbon in the southwest Kalahari, Botswana. Soil Biol Biochem 42(2):313–318. doi: 10.1016/j.soilbio.2009.11.009 CrossRefGoogle Scholar
  52. Maier S, Schmidt TSB, Zheng LJ, Peer T, Wagner V, Grube M (2014) Analyses of dryland biological soil crusts highlight lichens as an important regulator of microbial communities. Biodivers Conserv 23:1735–1755CrossRefGoogle Scholar
  53. Malam Issa O, Défarge C, Trichet J, Valentin C, Rajot JL (2009) Microbiotic soil crusts in the Sahel of Western Niger and their influence on soil porosity and water dynamics. CATENA 77(1):48–55. doi: 10.1016/j.catena.2008.12.013 CrossRefGoogle Scholar
  54. Marusenko Y, Bates ST, Anderson I, Johnson S, Soule T, Garcia-Pichel F (2013) Ammonia-oxidizing archaea and bacteria are structured by geography in biological soil crusts across North American arid lands. Ecol Process 2:9. doi: 10.1186/2192-1709-2-9 CrossRefGoogle Scholar
  55. Miralles-Mellado I, Cantón Y, Solé-Benet A (2011) Two-dimensional porosity of crusted silty soils: indicators of soil quality in semiarid rangelands? Soil Sci Soc Am J 75(4):1330–1342. doi: 10.2136/sssaj2010.0283 CrossRefGoogle Scholar
  56. Pringault O, Garcia-Pichel F (2004) Hydrotaxis of cyanobacteria in desert crusts. Microbial Ecol 47:363–373CrossRefGoogle Scholar
  57. Raanan H, Felde VJMNL, Peth S, Drahorad S, Ionescu D, Eshkol G, Treves H, Felix-Henningsen P, Berkowicz S, Keren N, Horn R, Hagemann M, Kaplan A (2016) Three-dimensional structure and cyanobacterial activity within a desert biological soil crust. Environ Microbiol 18: 372–383. doi: 10.1111/1462-2920.12859
  58. Rajeev L, Nunes da Rocha U, Klitgord N, Luning EG, Fortney J, Axen SP, Shih PM, Bouskill NJ, Bowen BP, Kerfeld C, Garcia-Pichel F, Brodie EL, Northen TR, Mukhopadhyay A (2013) Dynamic cyanobacterial response to hydration and dehydration in a desert biological soil crust. ISME J 7:2178–2191. doi: 10.1038/ismej.2013.83 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Ramirez-Reinat EL, Garcia-Pichel F (2012) Prevalence of Ca2 + -ATPase-mediated carbonate dissolution among cyanobacterial euendoliths. Appl Environ Microb 78(1):7–13CrossRefGoogle Scholar
  60. Rao B, Liu Y, Lan S, Wu P, Wang W, Li D (2012) Effects of sand burial stress on the early developments of cyanobacterial crusts in the field. Eur J Soil Biol 48:48–55CrossRefGoogle Scholar
  61. Rossi F, Potrafka R, Garcia-Pichel F, de Philippis R (2012) Role of the exo-polysaccharides in enhancing hydraulic conductivity of biological soil crusts. Soil Biol Biochem 46:33–40CrossRefGoogle Scholar
  62. Serstevens A, Rouxhet PG, Herbillon AJ (1978) Alteration of mica surfaces by water and solutions. Clay Miner 13:401–410CrossRefGoogle Scholar
  63. Smith SM, Abed RMM, Garcia-Pichel F (2004) Biological soil crusts of sand dunes in Cape Cod National Seashore Massachusetts, USA. Microbial Ecol 28:200–208CrossRefGoogle Scholar
  64. Steven B, Gallegos-Graves L, Belnap J, Kuske CR (2013) Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material. FEMS Microbiol Ecol 86:101–113CrossRefPubMedGoogle Scholar
  65. Thomas AD, Dougill AJ (2006) Distribution and characteristics of cyanobacterial soil crusts in the Molopo Basin, South Africa. J Arid Environ 64(2):270–283. doi: 10.1016/j.jaridenv.2005.04.011 CrossRefGoogle Scholar
  66. Thomas AD, Dougill AJ (2007) Spatial and temporal distribution of cyanobacterial soil crusts in the Kalahari: implications for soil surface properties. Geomorphology 85:17–29CrossRefGoogle Scholar
  67. Veluci RM, Neher DA, Weicht TR (2006) Nitrogen fixation and leaching of biological soil crust communities in mesic temperate soils. Microbial Ecol 51(2):189–96. doi: 10.1007/s00248-005-0121-3 CrossRefGoogle Scholar
  68. Verrecchia E, Yair A, Kidron GJ, Verrecchia K (1995) Physical properties of the psammophile cryptogamic crust and their consequences to the water regime of sandy soils, north-western Negev Desert, Israel. J Arid Environ 29(4):427–437CrossRefGoogle Scholar
  69. Weber B, Wessels DCJ, Büdel B (1996) Biology and ecology of cryptoendolithic cyanobacteria of a sandstone outcrop in the Northern Province, South Africa. Algol Stud 83:565–579Google Scholar
  70. Weber B, Scherr C, Bicker F, Friedl T, Büdel B (2011) Respiration-induced weathering patterns of two endolithically growing lichens. Geobiology 9:34–43CrossRefPubMedGoogle Scholar
  71. Wessels DCJ, Büdel B (1995) Epilithic and cryptoendolithic cyanobacteria of Clarens sandstone cliffs in the Golden Gate Highlands National Park, South Africa. Bot Acta 108:220–226CrossRefGoogle Scholar
  72. Wessels DCJ, Schoeman P (1988) Mechanism and rate of weathering of Clarens sandstone by an endolithic lichen. S Afr J Sci 84:274–277Google Scholar
  73. Williams AJ, Buck BJ, Beyene MA (2012) Biological soil crusts in the Mojave Desert, USA: micromorphology and pedogenesis. Soil Sci Soc Am J 76(5):1685–1695. doi: 10.2136/sssaj2012.0021 CrossRefGoogle Scholar
  74. Wu L, Lan S, Zhang D, Hu C (2011) Small-scale vertical distribution of algae and structure of lichen soil crusts. Microb Ecol 62:715–724CrossRefPubMedGoogle Scholar
  75. Yair A (1990) Runoff generation in a sandy area—the Nizzana Sands, Western Negev, Israel. Earth Surf Process Land 15:597–609CrossRefGoogle Scholar
  76. Yair A, Almog R, Veste M (2011) Differential hydrological response of biological topsoil crusts along a rainfall gradient in a sandy arid area: Northern Negev desert. Israel Catena 87(3):326–333CrossRefGoogle Scholar
  77. Yeager CM, Kornosky JL, Morgan RL, Cain EC, Belnap J, Garcia-Pichel F, Kuske CR (2007) Three distinct clades of cultured heterocystous cyanobacteria constitute the dominant N-fixing members of biological soil crusts of the Colorado Plateau, USA. FEMS Microbiol Ecol 60(1):85–97CrossRefPubMedGoogle Scholar
  78. Zhang Y (2005) The microstructure and formation of biological soil crusts in their early developmental stage. Chin Sci Bull 50(2):117–121Google Scholar
  79. Zhang YM, Wang HL, Wang YQ, Yang WK, Zhang DY (2006) The microstructure of microbiotic crust and its influence on wind erosion for a sandy soil surface in the Gurbantunggut Desert of Northwestern China. Geoderma 132:441–449CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ferran Garcia-Pichel
    • 1
    Email author
  • Vincent John Martin Noah Linus Felde
    • 2
    • 3
  • Sylvie Laureen Drahorad
    • 2
  • Bettina Weber
    • 4
  1. 1.School of Life SciencesArizona State UniversityTempeUSA
  2. 2.Institute of Soil Science and Soil Conservation, Research Centre for Biosystems, Land Use and Nutrition (IFZ)Justus Liebig University GiessenGiessenGermany
  3. 3.Department of Soil ScienceUniversity of KasselWitzenhausenGermany
  4. 4.Multiphase Chemistry DepartmentMax Planck Institute for ChemistryMainzGermany

Personalised recommendations