Advertisement

Controls on Distribution Patterns of Biological Soil Crusts at Micro- to Global Scales

  • Matthew A. BowkerEmail author
  • Jayne Belnap
  • Burkhard Büdel
  • Christophe Sannier
  • Nicole Pietrasiak
  • David J. Eldridge
  • Víctor Rivera-Aguilar
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 226)

Abstract

Biological soil crusts (biocrusts) are heterogeneously distributed in space, and the drivers of their distribution depend on the spatial scale of observation. Globally, there are about 1544 cyanobacteria, algae, bryophyte, and lichen species reported as components of biocrusts. At the global scale, the degree and age of isolation of land masses may dictate distribution of these species and the similarities of the floras of different continents. At intracontinental and smaller scales, climate strongly influences abundance and community composition of biocrusts. Within drylands, biocrusts become more abundant and diverse with increases in precipitation. The seasonality of rainfall is about equally important, with regions receiving the most precipitation in winter exhibiting the highest abundance. At ecoregional and smaller scales, edaphic gradients become particularly influential. The most significant soil properties influencing the cover, richness, and composition of biocrusts in dryland environments are soil texture, pH, and calcareousness. Additionally, gypsiferous soils are often associated with distinct floras and high abundance and diversity of biocrusts, especially lichens. At local to microscales, biocrusts often are better developed in habitats with lower radiation loads such as polar-oriented slopes or shaded habitats. Also at small scales, vascular plant canopies buffer microclimate for biocrusts, but also can exert negative influences such as burial by litter. While our knowledge of biocrust distribution has advanced rapidly, there are considerable geographic and taxonomic gaps in our knowledge and a pronounced lack of truly global studies.

Keywords

Lichen Species Biological Soil Crust Mojave Desert Colorado Plateau Gurbantunggut Desert 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

MAB acknowledges support from the Bureau of Land Management. N. Beaugendre, O. Malam Issa, C Valentin, JL Rajot, JF Desprats, and O Cerdan contributed to the case study “Ecoregional Patterns in the Sahel (Africa).” T. Arundel provided GIS assistance to the case study “Ecoregional Patterns on the Colorado Plateau (USA).” Amanda Williams and Elsevier kindly furnished permission to use Fig. 10.5. JB received support from the USGS Ecosystems program. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government.

References

  1. Abed RMM, Al-Kharesi S, Schramm A, Robinson MD (2010) Bacterial diversity, pigments and nitrogen fixation of biological desert crusts from the Sultanate of Oman. FEMS Microbiol Ecol 72:418–428PubMedCrossRefGoogle Scholar
  2. Abed RMM, Al-Sadi AM, Al-Shehi M, Al-Hinai S, Robinson MD (2013) Diversity of free-living and lichenized fungal communities in biological soil crust of the Sultanate of Oman and their role in improving soil properties. Soil Biol Biochem 57:695–705CrossRefGoogle Scholar
  3. Azúa-Bustos A, González-Silva C, Mancilla RA, Salas L, Palma RE, Wynne JJ, McKay CP (2009) Ancient photosynthetic eukaryote biofilms in an Atacama Desert coastal cave. Microb Ecol 58:485–496. doi: 10.1007/s00248-009-9500-5 PubMedCrossRefGoogle Scholar
  4. Azúa-Bustos A, González-Silva C, Mancilla RA, Salas L, Gómez-Silva B, McKay CP, Vicuña R (2011) Hypolithic cyanobacteria supported mainly by fog in the coastal range of the Atacama Desert. Microb Ecol 61:568–581PubMedCrossRefGoogle Scholar
  5. Beaugendre N, Choney A, Sannier C, Malam Issa O, Desprat JF, Cerdan O (2012) A predictive model of spatial distribution of Biological Soil Crust in the Sahel from local to regional scale. Paper presented at the European Geosciences Union General Assembly, Vienna, Austria, 22–27 Apr 2012Google Scholar
  6. Belnap J, Lange OL (eds) (2003) Biological soil crusts: structure, function and management. Springer, BerlinGoogle Scholar
  7. Belnap J, Büdel B, Lange OL (2003) Biological soil crusts: characteristics and distribution. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 3–30CrossRefGoogle Scholar
  8. Belnap J, Welter JR, Grimm NB, Barger NN, Ludwig JA (2005) Linkages between microbial and hydrologic processes in arid and semi-arid watersheds. Ecology 86:298–307CrossRefGoogle Scholar
  9. Belnap J, Miller DM, Bedford DR, Phillips SL (2014) Pedological and geological relationships with soil lichen and moss distribution in the eastern Mojave Desert, CA, USA. J Arid Environ 106:45–57CrossRefGoogle Scholar
  10. Bontemps S, Defourny P, Radoux J, van Bogaert E, Lamarche C, Achard F, Mayaux P, Boettcher M, Brockmann C, Kirches G, Zülkhe M, Kalogirou V, Arino O (2013) Consistent global land cover maps for climate modeling communities: current achievements of the ESA’s land cover CCI. Paper presented at the ESA Living Planet Symposium, Edinburgh, United Kingdom, 9–13 Sept 2013Google Scholar
  11. Bowker MA, Belnap J (2008) A simple classification of soil types as habitats of biological soil crusts on the Colorado Plateau, USA. J Veg Sci 19:31–840CrossRefGoogle Scholar
  12. Bowker MA, Belnap J, Davidson DW, Phillips SL (2005) Evidence for micronutrient limitation of biological soil crusts: importance to arid-lands restoration. Ecol Appl 15:1941–1951CrossRefGoogle Scholar
  13. Bowker MA, Belnap J, Davidson DW, Goldstein H (2006a) Correlates of biological soil crust abundance across a continuum of spatial scales: support for a hierarchical conceptual model. J Appl Ecol 43:152–163CrossRefGoogle Scholar
  14. Bowker MA, Belnap J, Miller ME (2006b) Spatial modeling of biological soil crusts to support rangeland assessment and monitoring. Rangel Ecol Manag 59:519–529CrossRefGoogle Scholar
  15. Briggs A, Morgan JW (2008) Morphological diversity and abundance of biological soil crusts differ in relation to landscape setting and vegetation type. Aust J Bot 56:245–253Google Scholar
  16. Bryce SA, Strittholt JR, Ward BC, Bachelet DM (2012) Colorado Plateau rapid ecoregional assessment report. Bureau of Land Management, DenverGoogle Scholar
  17. Büdel B (2003) Synopsis: comparative biogeography of soil-crust biota. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 141–152Google Scholar
  18. Büdel B, Darienko T, Deutschewitz K, Dojani S, Friedl T, Mohr KI, Salisch M, Reisser W, Weber B (2009) Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Microb Ecol 57:229–247PubMedCrossRefGoogle Scholar
  19. Büdel B, Colesie C, Green TGA, Grube M, Lázaro Suau R, Loewen-Schneider K, Maier S, Peer T, Pintado A, Raggio J, Ruprecht U, Sancho L, Schroeter B, Türk R, Weber B, Wedin M, Westberg M, Williams L, Zheng L (2014) Improved appreciation of the functioning and importance of biological soil crusts in Europe—the Soil Crust International project (SCIN). Biodivers Conserv 23:1639–1658PubMedPubMedCentralCrossRefGoogle Scholar
  20. Concostrina-Zubiri L, Martínez I, Rabasa SG, Escudero A (2013) The influence of environmental factors on biological soil crust: from a community perspective to a species level approach. J Veg Sci 25(2):503–513. doi: 10.1111/jvs.12084 CrossRefGoogle Scholar
  21. Csotonyi JT, Addicott JF (2004) Influence of trampling-induced microtopography on growth of the soil crust bryophyte Ceratodon purpureus. Can J Bot 82:1382–1392CrossRefGoogle Scholar
  22. De los Rios A, Raggio J, Pérez-Ortega S, Vivas M, Pintado A, Green TGA, Ascaso C, Sancho LG (2011) Anatomical, morphological and ecophysiological strategies in Placopsis pycnotheca (lichenized fungi, Ascomycota) allowing rapid colonization of recently deglaciated soils. Flora 206:857–864CrossRefGoogle Scholar
  23. Dettweiler-Robinson E, Bakker JD, Grace JB (2013a) Controls of biological soil crust cover and composition shift with succession in sagebrush shrub-steppe. J Arid Environ 94:96–104CrossRefGoogle Scholar
  24. Dettweiler-Robinson E, Ponzetti JM, Bakker JD (2013b) Long-term changes in biological soil crust cover and composition. Ecol Process 2:5CrossRefGoogle Scholar
  25. Dojani S, Kauff F, Weber B, Büdel B (2014) Genotypic and phenotypic diversity of cyanobacteria in biological soil crusts of the Succulent Karoo and Nama Karoo of Southern Africa. Microb Ecol 67:286–301PubMedCrossRefGoogle Scholar
  26. Dunkerley DL, Brown KJ (1995) Runoff and runon areas in a patterned chenopod shrubland, arid western New South Wales, Australia: characteristics and origin. J Arid Environ 30:41–55CrossRefGoogle Scholar
  27. Eldridge DJ (1996) Distribution and floristics of terricolous lichens in soil crusts in arid and semi-arid New South Wales, Australia. Aust J Bot 44:581–599CrossRefGoogle Scholar
  28. Eldridge DJ (2003) Biological soil crusts of Australia. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 119–132Google Scholar
  29. Eldridge DJ, Koen TB (1998) Cover and floristics of microphytic soil crusts in relation to indices of landscape health. Plant Ecol 137:101–114CrossRefGoogle Scholar
  30. Eldridge DJ, Tozer ME (1997) Environmental factors relating to the distribution of terricolous bryophytes and lichens in semi-arid Eastern Australia. Bryologist 100:28–39CrossRefGoogle Scholar
  31. Eldridge DJ, Zaady E, Shachak M (2002) The impact of disturbance on runoff and sediment production and its implications for the management of desert ecosystems. Landsc Ecol 17:587–597CrossRefGoogle Scholar
  32. Eldridge DJ, Freudenberger D, Koen TB (2005) Diversity and abundance of biological soil crust taxa in relation to fine- and coarse-scale disturbances in a grassy eucalypt woodland in eastern Australia. Plant Soil 281:255–268CrossRefGoogle Scholar
  33. Flechtner VR (2007) North American desert microbiotic soil crust communities. In: Seckbach J (ed) Cellular origin, life in extreme habitats and astrobiology, vol 11. Springer, Dordrecht, pp 539–551Google Scholar
  34. Flechtner VR, Johansen JR, Clark WH (1998) Algal composition of microbiotic crusts from the central desert of Baja California, Mexico. Great Basin Nat 58:295–311Google Scholar
  35. Flechtner VR, Johansen JR, Belnap J (2008) The biological soil crusts of the San Nicolas Island: enigmatic algae from a geographically isolated ecosystem. West N Am Nat 68:405–436CrossRefGoogle Scholar
  36. Forest HS, Weston CR (1966) Blue-green algae from the Atacama Desert of Northern Chile. J Phycol 2:163–164PubMedCrossRefGoogle Scholar
  37. Frey W, Herrnstadt I, Kürschner H (1990) Verbreitung und Soziologie terrestrischer Bryophytengesellschaften in der Jüdäischen Wüste. Phytocoenologia 19:233–265CrossRefGoogle Scholar
  38. Fritsch FE (1916) The morphology and ecology of an extreme terrestrial form of Zygnema (Zygogonium) ericetorum (Kuetz.) Hansg. Ann Bot 30:135–149CrossRefGoogle Scholar
  39. Galun M, Bubrick P, Garty J (1982) Structural and metabolic diversity of two desert-lichen populations. J Hattori Bot Lab 53:321–324Google Scholar
  40. Garcia-Pichel F, Belnap J (2003) Small scale environments and distribution of biological soil crusts. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 193–202Google Scholar
  41. Garcia-Pichel F, Loza V, Marusenko Y, Mateo P, Portrafka RM (2013) Temperatures drives the continental-scale distribution of key microbes in topsoil communities. Science 340:1574–1577PubMedCrossRefGoogle Scholar
  42. George DB, Davidson DW, Schleip KC, Patrell-Kim LJ (2000) Microtopography of microbiotic crusts on the Colorado Plateau, and the distribution of component organisms. West N Am Nat 60:343–354Google Scholar
  43. Haarmeyer DH, Luther-Mosebach J, Dengler J, Schmiedel U, Finckh M et al (2010) Biodiversity in southern Africa. In: Patterns at local scale—the BIOTA observatories, vol 1. Klaus Hess Publishers, Göttingen, Windhoek, pp 1–801Google Scholar
  44. Hawkes CV, Flechtner VR (2002) Biological soil crusts in a xeric Florida shrubland: composition, abundance, and spatial heterogeneity of crusts with different disturbance histories. Microb Ecol 43:1–12PubMedCrossRefGoogle Scholar
  45. Hernandez RR, Knudsen K (2012) Late-successional biological soil crusts in a biodiversity hotspot: an example of congruency in species richness. Biodivers Conserv 21:1015–1031CrossRefGoogle Scholar
  46. Hernstadt I, Kidron G (2005) Reproductive strategies of Bryum dunense in three microhabitats in the Negev Desert. Bryologist 108:101–109CrossRefGoogle Scholar
  47. Hu C, Zhang D, Huang Z, Liu Y (2003) The vertical microdistribution of cyanobacteria and green algae within desert crusts and the development of the algal crusts. Plant Soil 257:97–111CrossRefGoogle Scholar
  48. Kidron GJ, Vonshak A, Dor I, Barinova S, Abeliovich A (2010) Properties and spatial distribution of microbiotic crusts in the Negev Desert, Israel. Catena 82:92–101CrossRefGoogle Scholar
  49. Lalley JS, Viles HA, Copeman N, Cowley C (2006) The influence of multi-scale environmental variables on the distribution of terricolous lichens in a fog desert. J Veg Sci 17:831–838CrossRefGoogle Scholar
  50. Lange OL (2003) Photosynthesis of soil-crust biota as dependent on environmental factors. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function and management. Springer, Berlin, pp 217–240Google Scholar
  51. Langhans TM, Storm C, Schwabe A (2010) Regeneration processes of biological soil crusts, macro-cryptogams and vascular plant species after fine-scale disturbance in a temperate region: recolonization or successional replacement? Flora 205:46–60CrossRefGoogle Scholar
  52. Lewis LA, Flechtner VR (2002) Green algae (Chlorophyta) of desert microbiotic crusts: diversity of North American taxa. Taxon 51:443–451CrossRefGoogle Scholar
  53. Li X-R, He M-Z, Zerbe S, Li X-J, Liu L-C (2010) Micro-geomorphology determines community structure of biological soil crusts at small scales. Earth Surf Process Landf 35:932–940CrossRefGoogle Scholar
  54. Lobel S, Dengler J, Hobohm C (2006) Species richness of vascular plants, bryophytes and lichens in dry grasslands: the effects of environment, landscape structure and competition. Folia Geobot 41:377–393CrossRefGoogle Scholar
  55. Loppi S, Boscagli A, De Dominicis V (2004) Ecology of soil lichens from Pliocene clay badlands of central Italy in relation to geomorphology and vascular vegetation. Catena 55:1–15CrossRefGoogle Scholar
  56. Ludwig J, Tongway D, Freudenberger D, Noble J, Hodgkinson K (1997) Landscape ecology: functions and management. CSIRO, CollingwoodGoogle Scholar
  57. Maestre FT (2003) Small scale spatial patterns of two soil lichens in semi-arid Mediterranean steppe. Lichenologist 35:71–81CrossRefGoogle Scholar
  58. Maestre FT, Cortina J (2002) Spatial patterns of surface soil properties and vegetation in a Mediterranean semi-arid steppe. Plant Soil 241:279–291CrossRefGoogle Scholar
  59. Malam Issa O, Trichet J, Défarge C, Couté A, Valentin C (1999) Morphology and microstructure of microbiotic soil crusts on a tiger bush sequence (Niger, Sahel). Catena 37:175–187CrossRefGoogle Scholar
  60. Malam Issa O, Rajot JL, Languille J, Joulian C, Naisse C (2010) Microbiotic soil crusts distribution and characteristics across latitudinal gradient in Sahelian part of Western Niger. Paper presented at Biological Soil Crusts in Ecosystems—their Diversity, Ecology, and Management Workshop Zellingen-Retzbach, Germany, 22–25 Aug 2010Google Scholar
  61. Marsh J, Nouvet S, Sanborn P, Coxson D (2006) Composition and function of biological soil crust communities along topographic gradients in grasslands of central interior British Columbia (Chilcotin) and southwestern Yukon (Kluane). Can J Bot 84:717–736CrossRefGoogle Scholar
  62. Marshall WA, Chalmers MO (1997) Airborne dispersal of Antarctic soil algae and cyanobacteria. Ecography 20:585–594CrossRefGoogle Scholar
  63. Martínez I, Escudero A, Maestre FT (2006) Small-scale patterns of abundance of mosses and lichens forming biological soil crusts in two semi-arid gypsum environments. Aust J Bot 54:339–348CrossRefGoogle Scholar
  64. McCune B, Rosentreter R (2007) Biotic soil crust lichens of the Columbia Basin. Northwest Lichenologists, Corvallis, pp 1–105Google Scholar
  65. Miller DM, Bedford DR, Hughson DL, McDonald EV, Robinson SE, Schmidt KM (2009) Mapping Mojave Desert ecosystem properties with surficial geology. In: Webb RH, Fenstermaker LF, Heaton JS, Hughson DL, McDonald EV, Miller DM (eds) The Mojave Desert. University of Nevada Press, Reno, pp 225–251Google Scholar
  66. Montoya H, Gómez J, Vera G (1998) Cultivo de cianobacterias de costras algal-liquénicas de las Lomas de Pachacamac, Lima. Biotempo 3:7–16Google Scholar
  67. Nagy ML, Pérez A, Garcia-Pichel F (2005) The prokaryotic diversity of biological soil crusts in the Sonoran Desert (Organ Pipe Cactus National Monument, AZ). FEMS Microbiol Ecol 54:233–245PubMedCrossRefGoogle Scholar
  68. Nash TH III, White SL, Marsh JE (1977) Lichen and moss distribution and biomass in hot desert ecosystems. Bryologist 80:470–479CrossRefGoogle Scholar
  69. Novichkova-Ivanova LN (1972) Soil algae of middle Asia deserts. USSR, Leningrad, pp 180–182Google Scholar
  70. Novichkova-Ivanova LN (1980) Bodenalgen der phytozönosen von Sahara-Gobi Wüstengebieten. Akademie der Wissenschaft Sow. UnionGoogle Scholar
  71. Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–51CrossRefGoogle Scholar
  72. Ochoa-Hueso R, Hernandez RR, Pueyo J, Manrique E (2011) Spatial distribution and physiology of biological soil crusts from semi-arid central Spain are related to soil chemistry and shrub cover. Soil Biol Biochem 43:1894–1901CrossRefGoogle Scholar
  73. Pallas PS (1776) Reise durch verschiedene Provinzen des Russischen Reiches in einem ausführlichen Auszuge. Johann Georg Fleischer, FrankfurtGoogle Scholar
  74. Peterson FF (1981) Landforms of the basin and range, defined for soil survey. Technical Bulletin, 28Google Scholar
  75. Pharo EJ, Beattie AJ (1997) Bryophyte and lichen diversity: a comparative study. Austral Ecol 22:151–162CrossRefGoogle Scholar
  76. Phillipson J (1935) Some algae of Victorian soils. Proc Roy Soc Victoria 47:262–287Google Scholar
  77. Pichrtova M, Veselá J, Holzinger A, Hájek T. (2013) Diversity and desiccation tolerance of Zygnema and Zygnemopsis from the Arctic and Antarctica. 10th International Phycological Congress (4–10 August) PosterGoogle Scholar
  78. Pietrasiak N, Johansen JR, Drenovsky RE (2011a) Geologic composition influences distribution of microbiotic crusts in the Mojave and Colorado Deserts at the regional scale. Soil Biol Biochem 43:9767–9974CrossRefGoogle Scholar
  79. Pietrasiak N, Johansen JR, LaDoux T, Graham RC (2011b) Comparison of disturbance impacts to and spatial distribution of biological soil crusts in the little San Bernardino Mountains of Joshua Tree National Park, California. West N Am Nat 71:539–552CrossRefGoogle Scholar
  80. Pietrasiak N, Drenovsky RE, Santiago LS, Graham RC (2014) Biogeomorphology of a Mojave Desert landscape—configurations and feedbacks of abiotic and biotic land surfaces during landform evolution. Geomorphology 206:23–36CrossRefGoogle Scholar
  81. Pintado A, Sancho LG, Green TGA, Blanquer JM, Lazaro R (2005) Functional ecology of the biological soil crust in semiarid SE Spain: sun and shade populations of Diploschistes diacapsis (Ach.) Lumbsch. Lichenologist 37:425–432CrossRefGoogle Scholar
  82. Pócs T (2009) Cyanobacterial crust types, as strategies for survival in extreme habitats. Acta Bot Hung 51(1–2):147–178CrossRefGoogle Scholar
  83. Pointing SB, Belnap J (2012) Microbial colonization and controls in dryland systems. Nat Rev Microbiol 10:551–562PubMedCrossRefGoogle Scholar
  84. Pointing SB, Chan Y, Lacap DC, Lau MCY, Jurgens JA, Farrell RL (2009) Highly specialized microbial diversity in hyper-arid polar desert. PNAS 106:19964–19969PubMedPubMedCentralCrossRefGoogle Scholar
  85. Ponzetti JM, McCune B (2001) Biotic soil crusts of Oregon’s shrub steppe: community composition in relation to soil chemistry, climate, and livestock activity. Bryologist 104:212–225CrossRefGoogle Scholar
  86. Pushkareva E, Elster J (2013) Biodiversity and ecological classification of cryptogamic soil crusts in the vicinity of Petunia Bay, Svalbard. Czech Polar Rep 3:7–18CrossRefGoogle Scholar
  87. Read CF, Duncan DH, Vesk PA, Elith J (2008) Biological soil crust distribution is related to patterns of fragmentation and land use in a dryland agricultural landscape of southern Australia. Landsc Ecol 23:1093–1105CrossRefGoogle Scholar
  88. Read CF, Duncan DH, Vesk PA, Elith J (2011) Surprisingly fast recovery of biological soil crusts following livestock removal in southern Australia. J Veg Sci 22:905–916CrossRefGoogle Scholar
  89. Reed SC, Coe KC, Sparks JP, Houseman DC, Zelikova TJ, Belnap J (2012) Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nat Clim Chang 2:752–755CrossRefGoogle Scholar
  90. Rivera-Aguilar V, Montejano G, Rodríguez-Zaragoza S, Durán-Díaz A (2006) Distribution and composition of cyanobacteria, mosses and lichens of the biological soil crusts of the Tehuacán Valley, Puebla, México. J Arid Environ 67:208–225CrossRefGoogle Scholar
  91. Rogers RW (1972) Soil surface lichens in arid and sub- arid south-eastern Australia. II. Phytosociology and geographic zonation. Aust J Bot 20:215–227CrossRefGoogle Scholar
  92. Rogers RW (1973) Soil surface lichens in arid and sub- arid south-eastern Australia. III. The relationship between distribution and environment. Aust J Bot 20:301–316CrossRefGoogle Scholar
  93. Rogers RW (2006) Soil surface lichens on a 1500 kilometre climatic gradient in subtropical eastern Australia. Lichenologist 38:565–576CrossRefGoogle Scholar
  94. Root HT, McCune B (2012) Regional patterns of biological soil crust lichen species composition related to vegetation, soils, and climate in Oregon, USA. J Arid Environ 79:93–100CrossRefGoogle Scholar
  95. Root HT, Miller JED, McCune B (2011) Biotic soil crust lichen diversity and conservation in shrub-steppe habitats of Oregon and Washington. Bryologist 114:796–812CrossRefGoogle Scholar
  96. Rosentreter R, Belnap J (2003) Biological soil crusts of North America. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 31–50Google Scholar
  97. Rosentreter R, Bowker M, Belnap J (2007) A field guide to biological soil crusts of western U.S. drylands: common lichens and bryophytes. U.S. Government Printing Office, DenverGoogle Scholar
  98. Rosentreter R, Rai H, Upreti DK (2014) Distribution ecology of soil crust lichens in India: a comparative assessment with global patterns. In: Rai H, Upreti DK (eds) Terricolous lichens in India, vol 1, Diversity patterns and distribution ecology. Springer, Berlin, pp 21–31CrossRefGoogle Scholar
  99. Serpe M, Roberts E, Eldridge DJ, Rosentreter R (2013) Bromus tectorum litter alters photosynthetic characteristics of biological soil crusts from a semiarid shrubland. Soil Biol Biochem 60:220–230CrossRefGoogle Scholar
  100. Starks TL, Shubert LE (1979) Algal colonization on a reclaimed surface mined area in western North Dakota. In: Wali MK (ed) Ecology and coal resource development. Pergamon Press, New York, pp 652–660CrossRefGoogle Scholar
  101. Steven B, Gallegos-Graves LV, Belnap J, Kuske CR (2013) Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material. FEMS Microbiol Ecol 86:101–113PubMedCrossRefGoogle Scholar
  102. Stewart KJ, Coxson D, Grogan P (2011) Nitrogen inputs by associative cyanobacteria across a low arctic tundra landscape. Arct Antarct Alp Res 43:267–278CrossRefGoogle Scholar
  103. Thomas AD, Dougill AJ (2007) Spatial and temporal distribution of cyanobacterial soil crusts in the Kalahari: implications for soil surface properties. Geomorphology 85:17–29CrossRefGoogle Scholar
  104. Thompson DB, Walker LR, Landau FH, Stark LR (2005) The influence of elevation, shrub species, and biological soil crust on fertile islands in the Mojave Desert, USA. J Arid Environ 61:609–629CrossRefGoogle Scholar
  105. Tirkey J, Adhikary SP (2005) Cyanobacteria in biological soil crusts of India. Curr Sci 89:515–521Google Scholar
  106. Tongway DJ, Ludwig JA (1994) Small-scale patch heterogeneity in semi-arid landscapes. Pac Conserv Biol 1:201–208CrossRefGoogle Scholar
  107. Ullmann I, Büdel B (2003) Biological soil crusts of Africa. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 107–118Google Scholar
  108. Valentin C, Rajot JL, Mitja D (2004) Responses of soil crusting, runoff and erosion to fallowing in the sub-humid and semi-arid regions of West Africa. Agric Ecosyst Environ 104:287–302CrossRefGoogle Scholar
  109. Veste M, Littman T, Breckle SW, Yair A (2001) The role of biological soil crusts on desert sand dunes in the Northwest Negev, Israel. In: Breckle SW, Veste M, Wucherer W (eds) Sustainable land-use in deserts. Springer, Berlin, pp 357–367CrossRefGoogle Scholar
  110. Williams W, Büdel B (2012) Species diversity, biomass and long-term patterns of biological soil crusts with special focus on Cyanobacteria of the Acacia aneura Mulga Lands of Queensland, Australia. Algol Stud 140:23–50CrossRefGoogle Scholar
  111. Williams AJ, Buck BJ, Beyene MA (2012) Biological soil crusts in the Mojave Desert, USA: micromorphology and Pedogenesis. Soil Sci Soc Am J 76:1685–1695CrossRefGoogle Scholar
  112. Williams AJ, Buck BJ, Soukup DA, Merkler DJ (2013) Geomorphic controls on biological soil crust distribution: a conceptual model from the Mojave Desert (USA). Geomorphology 195:99–109CrossRefGoogle Scholar
  113. Zaady E, Arbel S, Barkai D, Sarig S (2013) Long-term impact of agricultural practices on biological soil crusts and their hydrological processes in a semiarid landscape. J Arid Environ 90:5–11CrossRefGoogle Scholar
  114. Zedda L, Gröngröft A, Schultz M, Petersen A, Mills A, Rambold G (2011) Distribution patterns of soil lichens across the principal biomes of southern Africa. J Arid Environ 75:215–220CrossRefGoogle Scholar
  115. Zhang YM, Chen J, Wang L, Wang XQ, Gu ZH (2007) The spatial distribution patterns of biological soil crusts in the Gurbantunggut Desert, Northern Xinjiang, China. J Arid Environ 68:599–610CrossRefGoogle Scholar
  116. Zhang BC, Zhang YM, Downing A, Nlu Y (2011) Distribution and composition of cyanobacteria and microalgae associated with biological soil crusts in the Gurbantunggut Desert, China. Arid Land Res Manag 25:275–293CrossRefGoogle Scholar
  117. Zhang J, Liu G, Xu M, Xu M, Yamanaka N (2013) Influence of vegetation factors on biological soil crust cover on rehabilitated grassland in the hilly Loess Plateau, China. Environ Earth Sci 68:1099–1105CrossRefGoogle Scholar
  118. Zhao J, Zhang B, Zhang Y (2008) Chlorophytes of biological soil crusts in Gurbantunggut Desert, Xinjiang Autonomous Region, China. Front Biol China 3:40–44CrossRefGoogle Scholar
  119. Zhao HL, Guo YR, Zhou RL, Drake S (2010) Biological soil crust and surface soil properties in different vegetation types of Horqin Sand Land, China. Catena 82:70–76CrossRefGoogle Scholar
  120. Zhao HL, Guo YR, Zhou RL, Drake S (2011) The effects of plantation development on biological soil crust and topsoil properties in a desert in northern China. Geoderma 160:367–372CrossRefGoogle Scholar
  121. Zhao Y, Qin N, Weber B, Xu M (2014) Response of biological soil crusts to raindrop erosivity and underlying influences in the hilly Loess Plateau region, China. Biodivers Conserv 23:1669–1686CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Matthew A. Bowker
    • 1
    Email author
  • Jayne Belnap
    • 2
  • Burkhard Büdel
    • 3
  • Christophe Sannier
    • 4
  • Nicole Pietrasiak
    • 5
  • David J. Eldridge
    • 6
  • Víctor Rivera-Aguilar
    • 7
  1. 1.School of ForestryNorthern Arizona UniversityFlagstaffUSA
  2. 2.US Geological Survey, Canyonlands Research StationSouthwest Biological Science CenterMoabUSA
  3. 3.Plant Ecology and Systematics, Department of BiologyUniversity of KaiserslauternKaiserslauternGermany
  4. 4.SIRS—Systèmes d’Information à Référence SpatialeVilleneuve d’AscqFrance
  5. 5.Plant and Environmental Sciences DepartmentNew Mexico State UniversityLas CrucesUSA
  6. 6.Centre for Ecosystem Science, School of Biological Earth and Environmental ScienceUniversity of NSWSydneyAustralia
  7. 7.Laboratorio de Ecología Microbiana, Unidad de Biología, Tecnología y Prototipos, Facultad de EstudiosSuperiores Iztacala, Universidad Nacional Autónoma de MéxicoTlalnepantlaMexico

Personalised recommendations