Advertisement

Biological Soil Crusts as an Organizing Principle in Drylands

  • Jayne BelnapEmail author
  • Bettina Weber
  • Burkhard Büdel
Part of the Ecological Studies book series (ECOLSTUD, volume 226)

Abstract

Biological soil crusts (biocrusts) have been present on Earth’s terrestrial surfaces for billions of years. They are a critical part of ecosystem processes in dryland regions, as they cover most of the soil surface and thus mediate almost all inputs and outputs from soils in these areas. There are many intriguing, but understudied, roles these communities may play in drylands. These include their function in nutrient capture and transformation, influence on the movement and distribution of nutrients and water within dryland soils, ability to structure vascular plant communities, role in creating biodiversity hotspots, and the possibility that they can be used as indicators of soil health. There are still many fascinating aspects of these communities that need study, and we hope that this chapter will facilitate such efforts.

Keywords

Vascular Plant Biological Soil Crust Critical Zone Moss Species Colorado Plateau 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

JB thanks the US Geological Survey’s Ecosystems program for support. BW gratefully acknowledges support by the Max Planck Society (Nobel Laureate Fellowship) and the German Research Foundation (projects WE2393/2-1 and WE2393/2-2). BB acknowledges grants (BU666/11 to 19) by the German Research Foundation (DFG). Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US government.

References

  1. Allington GRH, Valone TJ (2014) Islands of fertility: a by-product of grazing! Ecosystems 17:127–141CrossRefGoogle Scholar
  2. Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Shaeffer SM (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221–235CrossRefPubMedGoogle Scholar
  3. Belnap J, Phillips SL, Troxler T (2006) Soil lichen and moss cover and species richness can be highlydynamic: the effects of invasion by the annual exotic grass Bromus tectorum, precipitation, and temperature on biological soil crusts in SE Utah. Appl Soil Ecol 32:63–76CrossRefGoogle Scholar
  4. Belnap J, Prasse R, Harper K (2003) Influence of biological soil crusts on soil environments and vascular plants. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 281–300Google Scholar
  5. Bowker MA, Belnap J (2008) A simple classification of soil types as habitats of biological soil crusts on the Colorado Plateau, USA. J Veg Sci 19:831–840CrossRefGoogle Scholar
  6. Bowker MA, Belnap J, Rosentreter R et al (2004) Wildfire-resistant biological soil crusts and fire-induced loss of soil stability in Palouse prairies, USA. Appl Soil Ecol 26:41–52. doi: 10.1016/j.apsoil.2003.10.005 CrossRefGoogle Scholar
  7. Bowling DR, Grote EE, Belnap J (2011) Rain pulse response of soil CO2 exchange by biological soil crusts and grasslands of the semiarid Colorado Plateau, United States. J Geophys Res 116:1–17. doi: 10.1029/2011JG001643 Google Scholar
  8. Collins SL, Belnap J, Grimm NB et al (2014) A multi-scale, hierarchical model of pulse dynamics in aridland ecosystems. Annu Rev Ecol Evol Syst 45:397–419CrossRefGoogle Scholar
  9. Dahlberg A, Bültmann H, Cripps CL et al (2013) Chapter 10, Fungi. In: Meltofte H (ed) CAAF 2013. Arctic biodiversity assessment. Status and trends in arctic biodiversity. Conserv Arctic Flora Fauna, Akureyri, 674 pGoogle Scholar
  10. Daniëls FJA, Gillespie LJ, Poulin M et al (2013) Chapter 9, Plants. In: Meltofte H (ed) CAAF 2013. Arctic biodiversity assessment, status and trends in arctic biodiversity. Conserv Arctic Flora Fauna, Akureyri, 674 pGoogle Scholar
  11. Day JG, Tsavalos AJ (1996) An investigation of the heterotrophic culture of the green alga Tetraselmis. J Appl Phycol 8:73–77CrossRefGoogle Scholar
  12. Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, Pöschl U (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci 5:459–462CrossRefGoogle Scholar
  13. Garcia-Pichel F, Belnap J (2003) Small-scale environments and distribution of biological soil crusts. In: Belnap J, Lange O (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 193–201Google Scholar
  14. Golluscio RA, Sala OE, Lauenroth WR (1998) Differential use of large summer rainfall events by shrubs and grasses: a manipulative experiment in the Patagonian steppe. Oecologia 115:17–25CrossRefGoogle Scholar
  15. Green LE, Porras-Alfaro A, Sinsabaugh RL (2008) Translocation of nitrogen and carbon integrates biotic crust and grass production in desert grassland. J Ecol 96:1076–1085CrossRefGoogle Scholar
  16. Housman DC, Yeager CM, Darby BJ, Sanford RL Jr, Kuske CR, Neher DA, Belnap J (2007) Heterogeneity of soil nutrients and subsurface biota in a dryland ecosystem. Soil Biol Biochem 39:2138–2149CrossRefGoogle Scholar
  17. Isbell F, Craven D, Connolly J et al (2015) Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526(7574):574–577. doi: 10.1038/nature15374 CrossRefPubMedGoogle Scholar
  18. Khoja TM (1973) Heterotrophic growth of blue-green algae. Doctoral thesis, Durham University. http://etheses.dur.ac.uk/1315/
  19. Letrouit-Galinou M, Asta J (1994) Thallus morphogenesis in some lichens. Cryptogam Bot 4:274–282Google Scholar
  20. Mattick F (1953) Lichenologische Notizen: 1. Der Flechten-Koeffizient und seine Bedeutung für die Pflanzenbiogeographie.—2. Funde lichenisierter Clavarien in Brasilien.—3. Das Zusammenleben von Trentepohlien mit Flechten.—4. Gedanken zur Phylogenie der Flechten.—5. Zur Nomenklatur der Flechten. Berichte der Deutschen Botanischen Gesellschaft 64(7):263–276Google Scholar
  21. Naeem S, Knops JM, Tilman D et al (2000) Plant diversity increases resistance to invasion in the absence of covarying extrinsic factors. Oikos 91:97–108CrossRefGoogle Scholar
  22. Neff JC, Ballantyne AP, Farmer GL, Mahowld NM, Conroy JL, Landry CC, Overpeck JT, Painter TH, Lawrence CR, Reynolds RL (2008) Increasing eolian dust deposition in the western United States linked to human activity. Nat Geosci 1:189–195. doi: 10.1038/ngeo133 CrossRefGoogle Scholar
  23. Olson JB, Litaker RW, Paerl HW (1999) Ubiquity of heterotrophic diazotrophs in marine microbial mats. Aquat Microb Ecol 19:29–36CrossRefGoogle Scholar
  24. Perez-Garcia O, Escalante FM, de-Bashan LE et al (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36CrossRefPubMedGoogle Scholar
  25. Pointing SB, Belnap J (2012) Microbial colonization and controls in dryland systems. Nat Rev Microbiol 10:551–562CrossRefPubMedGoogle Scholar
  26. Reynolds R, Belnap J, Reheis M, Lamothe P, Luiszer F (2001) Aeolian dust in Colorado Plateau soils: nutrient inputs and recent change in source. Proc Natl Acad Sci U S A 98:7123–7127CrossRefPubMedPubMedCentralGoogle Scholar
  27. Rosentreter R (1984) Compositional patterns within a rabbitbrush (Chrysothamnus) community of the Idaho Snake River Plain. In: Proceedings, symposium on the biology of Artemisia and Chrysothamnus. US Department of Agriculture General Technical Report INT-200, pp 273–277Google Scholar
  28. Rosentreter R, Eldridge D (2003) Biological soil crust index for monitoring rangeland health. In: Allsopp N, Palmer AR, Milton SJ et al (eds) Proceedings of the VIIth international rangelands congress. Durban, South Africa, pp 767–769. ISBN 0-958-45348-9Google Scholar
  29. Schwinning S, Sala OE (2004) Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141:211–220CrossRefPubMedGoogle Scholar
  30. Ueno R, Hanagata N, Urano N, Suzuki M (2005) Molecular phylogeny and phenotypic variation in the heterotrophic green algal genus Prototheca (Trebouxiophyceae, Chlorophyta) 1. J Phycol 41:1268–1280CrossRefGoogle Scholar
  31. United States National Research Council (2001) Basic research opportunities in the earth sciences. The National Academies Press, Washington, DCGoogle Scholar

Copyright information

© Springer International Publishing Switzerland (outside the USA) 2016

Authors and Affiliations

  1. 1.U.S. Geological SurveySouthwest Biological Science CenterMoabUSA
  2. 2.Multiphase Chemistry DepartmentMax Planck Institute for ChemistryMainzGermany
  3. 3.Plant Ecology and Systematics, Department of BiologyUniversity of KaiserslauternKaiserslauternGermany

Personalised recommendations